scholarly journals The Multi-Level Mechanism of Action of a Pan-Ras Inhibitor Explains its Antiproliferative Activity on Cetuximab-Resistant Cancer Cells

2021 ◽  
Vol 8 ◽  
Author(s):  
Renata Tisi ◽  
Michela Spinelli ◽  
Alessandro Palmioli ◽  
Cristina Airoldi ◽  
Paolo Cazzaniga ◽  
...  

Ras oncoproteins play a crucial role in the onset, maintenance, and progression of the most common and deadly human cancers. Despite extensive research efforts, only a few mutant-specific Ras inhibitors have been reported. We show that cmp4–previously identified as a water-soluble Ras inhibitor– targets multiple steps in the activation and downstream signaling of different Ras mutants and isoforms. Binding of this pan-Ras inhibitor to an extended Switch II pocket on HRas and KRas proteins induces a conformational change that down-regulates intrinsic and GEF-mediated nucleotide dissociation and exchange and effector binding. A mathematical model of the Ras activation cycle predicts that the inhibitor severely reduces the proliferation of different Ras-driven cancer cells, effectively cooperating with Cetuximab to reduce proliferation even of Cetuximab-resistant cancer cell lines. Experimental data confirm the model prediction, indicating that the pan-Ras inhibitor is an appropriate candidate for medicinal chemistry efforts tailored at improving its currently unsatisfactory affinity.

2013 ◽  
Vol 3 (1) ◽  
pp. 1-10 ◽  

Pump-and-treat (P&T) is one of the most common methods for remediation of groundwater contaminated by hazardous wastes. However, this method suffers from serious disadvantages, due a series of subsurface processes. Using experimental data and mathematical model simulations, the role of sorption/ desorption and dissolution of non-aqueous phase liquids on the effectiveness of P&T remediation was examined. The results showed that the remediation of groundwater depends directly on the physical/ chemical properties of the contaminants and the hydrogeology of the site. With the exception of water-soluble contaminants occupying relatively small parts of relatively homogeneous and water-permeable geologic media, the remediation of groundwater contaminated by hazardous waste using P&T is, for all practical purposes, impossible and prohibitively expensive.


2020 ◽  
Vol 56 (65) ◽  
pp. 9332-9335
Author(s):  
Sandra Estalayo-Adrián ◽  
Salvador Blasco ◽  
Sandra A. Bright ◽  
Gavin J. McManus ◽  
Guillermo Orellana ◽  
...  

Two new water-soluble amphiphilic Ru(ii) polypyridyl complexes were synthesised and their photophysical and photobiological properties evaluated; both complexes showed a rapid cellular uptake and phototoxicity against HeLa cervical cancer cells.


2018 ◽  
Vol 15 (1) ◽  
pp. 169-181
Author(s):  
M. I. Sidorov ◽  
М. Е. Stavrovsky ◽  
V. V. Irogov ◽  
E. S. Yurtsev

Using the example of van der Pol developed a mathematical model of frictional self-oscillations in topochemically kinetics. Marked qualitative correspondence of the results of calculation performed using the experimental data of researchers.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Dominik Gryboś ◽  
Jacek S. Leszczyński ◽  
Dorota Czopek ◽  
Jerzy Wiciak

In this paper, we demonstrate how to reduce the noise level of expanded air from pneumatic tools. Instead of a muffler, we propose the expanded collecting system, where the air expands through the pneumatic tube and expansion collector. We have elaborated a mathematical model which illustrates the dynamics of the air flow, as well as the acoustic pressure at the end of the tube. The computational results were compared with experimental data to check the air dynamics and sound pressure. Moreover, the study presents the methodology of noise measurement generated in a pneumatic screwdriver in a quiet back room and on a window-fitting stand in a production hall. In addition, we have performed noise measurements for the pneumatic screwdriver and the pneumatic screwdriver on an industrial scale. These measurements prove the noise reduction of the pneumatic tools when the expanded collecting system is used. When the expanded collecting system was applied to the screwdriver, the measured Sound Pressure Level (SPL) decreased from 87 to 80 dB(A).


Author(s):  
Ze-Kun Wang ◽  
Jia-Le Lin ◽  
Yun-Chang Zhang ◽  
Chen-Wu Yang ◽  
Ya-Kun Zhao ◽  
...  
Keyword(s):  

Water-soluble hydrazone-connected 3D flexible organic frameworks have been revealed to in situ load and deliver short DNA into normal and cancer cells.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mykhaylo Tkach ◽  
Serhii Morhun ◽  
Yuri Zolotoy ◽  
Irina Zhuk

AbstractNatural frequencies and vibration modes of axial compressor blades are investigated. A refined mathematical model based on the usage of an eight-nodal curvilinear isoparametric finite element was applied. The verification of the model is carried out by finding the frequencies and vibration modes of a smooth cylindrical shell and comparing them with experimental data. A high-precision experimental setup based on an advanced method of time-dependent electronic interferometry was developed for this aim. Thus, the objective of the study is to verify the adequacy of the refined mathematical model by means of the advanced time-dependent electronic interferometry experimental method. The divergence of the results of frequency measurements between numerical calculations and experimental data does not exceed 5 % that indicates the adequacy and high reliability of the developed mathematical model. The developed mathematical model and experimental setup can be used later in the study of blades with more complex geometric and strength characteristics or in cases when the real boundary conditions or mechanical characteristics of material are uncertain.


Sign in / Sign up

Export Citation Format

Share Document