scholarly journals Exploring the Binding Interaction of Raf Kinase Inhibitory Protein With the N-Terminal of C-Raf Through Molecular Docking and Molecular Dynamics Simulation

2021 ◽  
Vol 8 ◽  
Author(s):  
Shraddha Parate ◽  
Shailima Rampogu ◽  
Gihwan Lee ◽  
Jong Chan Hong ◽  
Keun Woo Lee

Protein-protein interactions are indispensable physiological processes regulating several biological functions. Despite the availability of structural information on protein-protein complexes, deciphering their complex topology remains an outstanding challenge. Raf kinase inhibitory protein (RKIP) has gained substantial attention as a favorable molecular target for numerous pathologies including cancer and Alzheimer’s disease. RKIP interferes with the RAF/MEK/ERK signaling cascade by endogenously binding with C-Raf (Raf-1 kinase) and preventing its activation. In the current investigation, the binding of RKIP with C-Raf was explored by knowledge-based protein-protein docking web-servers including HADDOCK and ZDOCK and a consensus binding mode of C-Raf/RKIP structural complex was obtained. Molecular dynamics (MD) simulations were further performed in an explicit solvent to sample the conformations for when RKIP binds to C-Raf. Some of the conserved interface residues were mutated to alanine, phenylalanine and leucine and the impact of mutations was estimated by additional MD simulations and MM/PBSA analysis for the wild-type (WT) and constructed mutant complexes. Substantial decrease in binding free energy was observed for the mutant complexes as compared to the binding free energy of WT C-Raf/RKIP structural complex. Furthermore, a considerable increase in average backbone root mean square deviation and fluctuation was perceived for the mutant complexes. Moreover, per-residue energy contribution analysis of the equilibrated simulation trajectory by HawkDock and ANCHOR web-servers was conducted to characterize the key residues for the complex formation. One residue each from C-Raf (Arg398) and RKIP (Lys80) were identified as the druggable “hot spots” constituting the core of the binding interface and corroborated by additional long-time scale (300 ns) MD simulation of Arg398Ala mutant complex. A notable conformational change in Arg398Ala mutant occurred near the mutation site as compared to the equilibrated C-Raf/RKIP native state conformation and an essential hydrogen bonding interaction was lost. The thirteen binding sites assimilated from the overall analysis were mapped onto the complex as surface and divided into active and allosteric binding sites, depending on their location at the interface. The acquired information on the predicted 3D structural complex and the detected sites aid as promising targets in designing novel inhibitors to block the C-Raf/RKIP interaction.

2016 ◽  
Vol 12 (4) ◽  
pp. 1174-1182 ◽  
Author(s):  
Liang Fang ◽  
Xiaojian Wang ◽  
Meiyang Xi ◽  
Tianqi Liu ◽  
Dali Yin

Three residues of SK1 were identified important for selective SK1 inhibitory activity via SK2 homology model building, molecular dynamics simulation, and MM-PBSA studies.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3018 ◽  
Author(s):  
Gao Tu ◽  
Tingting Fu ◽  
Fengyuan Yang ◽  
Lixia Yao ◽  
Weiwei Xue ◽  
...  

The interaction of death-associated protein kinase 1 (DAPK1) with the 2B subunit (GluN2B) C-terminus of N-methyl-D-aspartate receptor (NMDAR) plays a critical role in the pathophysiology of depression and is considered a potential target for the structure-based discovery of new antidepressants. However, the 3D structures of C-terminus residues 1290–1310 of GluN2B (GluN2B-CT1290-1310) remain elusive and the interaction between GluN2B-CT1290-1310 and DAPK1 is unknown. In this study, the mechanism of interaction between DAPK1 and GluN2B-CT1290-1310 was predicted by computational simulation methods including protein–peptide docking and molecular dynamics (MD) simulation. Based on the equilibrated MD trajectory, the total binding free energy between GluN2B-CT1290-1310 and DAPK1 was computed by the mechanics generalized born surface area (MM/GBSA) approach. The simulation results showed that hydrophobic, van der Waals, and electrostatic interactions are responsible for the binding of GluN2B-CT1290–1310/DAPK1. Moreover, through per-residue free energy decomposition and in silico alanine scanning analysis, hotspot residues between GluN2B-CT1290-1310 and DAPK1 interface were identified. In conclusion, this work predicted the binding mode and quantitatively characterized the protein–peptide interface, which will aid in the discovery of novel drugs targeting the GluN2B-CT1290-1310 and DAPK1 interface.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1749
Author(s):  
Yuqi Zhang ◽  
Li Chen ◽  
Xiaoyu Wang ◽  
Yanyan Zhu ◽  
Yongsheng Liu ◽  
...  

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a type of Ribonucleic Acid (RNA) coronavirus and it has infected and killed many people around the world. It is reported that the receptor binding domain of the spike protein (S_RBD) of the SARS-CoV-2 virus is responsible for attachment to human angiotensin converting enzyme II (ACE2). Many researchers are attempting to search potential inhibitors for fighting SARS-CoV-2 infection using theoretical or experimental methods. In terms of experimental and theoretical research, Cefuroxime, Erythromycin, Lincomycin and Ofloxacin are the potential inhibitors of SARS-CoV-2. However, the interactive mechanism of the protein SARS-CoV-2 and the inhibitors are still elusive. Here, we investigated the interactions between S_RBD and the inhibitors using molecular dynamics (MD) simulations. Interestingly, we found that there are two binding sites of S_RBD for the four small molecules. In addition, our analysis also illustrated that hydrophobic and π-π stacking interactions play crucial roles in the interactions between S_RBD and the small molecules. In our work, we also found that small molecules with glycosyl group have more effect on the conformation of S_RBD than other inhibitors, and they are also potential inhibitors for the genetic variants of SARS-CoV-2. This study provides in silico-derived mechanistic insights into the interactions of S_RBD and inhibitors, which may provide new clues for fighting SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document