scholarly journals Interactive Mechanism of Potential Inhibitors with Glycosyl for SARS-CoV-2 by Molecular Dynamics Simulation

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1749
Author(s):  
Yuqi Zhang ◽  
Li Chen ◽  
Xiaoyu Wang ◽  
Yanyan Zhu ◽  
Yongsheng Liu ◽  
...  

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a type of Ribonucleic Acid (RNA) coronavirus and it has infected and killed many people around the world. It is reported that the receptor binding domain of the spike protein (S_RBD) of the SARS-CoV-2 virus is responsible for attachment to human angiotensin converting enzyme II (ACE2). Many researchers are attempting to search potential inhibitors for fighting SARS-CoV-2 infection using theoretical or experimental methods. In terms of experimental and theoretical research, Cefuroxime, Erythromycin, Lincomycin and Ofloxacin are the potential inhibitors of SARS-CoV-2. However, the interactive mechanism of the protein SARS-CoV-2 and the inhibitors are still elusive. Here, we investigated the interactions between S_RBD and the inhibitors using molecular dynamics (MD) simulations. Interestingly, we found that there are two binding sites of S_RBD for the four small molecules. In addition, our analysis also illustrated that hydrophobic and π-π stacking interactions play crucial roles in the interactions between S_RBD and the small molecules. In our work, we also found that small molecules with glycosyl group have more effect on the conformation of S_RBD than other inhibitors, and they are also potential inhibitors for the genetic variants of SARS-CoV-2. This study provides in silico-derived mechanistic insights into the interactions of S_RBD and inhibitors, which may provide new clues for fighting SARS-CoV-2 infection.

2020 ◽  
Author(s):  
Gard Nelson ◽  
Oleksandr Buzko ◽  
Aaron Bassett ◽  
Patricia R Spilman ◽  
Kayvan Niazi ◽  
...  

The Receptor Binding Domain (RBD) of the SARS-CoV-2 surface spike (S) protein interacts with host angiotensin converting enzyme 2 (ACE2) to gain entry to host cells and initiate infection 1-3. Detailed, accurate understanding of key interactions between S RBD and ACE2 provides critical information that may be leveraged in the development of strategies for the prevention and treatment of COVID-19. Utilizing the published sequences and cryo-EM structures of both the viral S RBD and ACE2 4,5, we performed in silico molecular dynamics (MD) simulations of free S RBD and of its interaction with ACE2 over the exceptionally long durations of 2.9 and 2 milliseconds, respectively, to elucidate the nature and relative affinity of S RBD surface residues for the ACE2 binding region. Our findings reveal that free S RBD has assumed an optimized ACE2 binding-ready conformation, incurring little entropic penalty for binding, an evolutionary adaptation that contributes to its high affinity for the receptor 6. We further identified high probability molecular binding interactions that inform both vaccine design and therapeutic development, which may include recombinant ACE2-based spike decoys 7 and/or allosteric S RBD-ACE2 binding inhibitors 8,9 to prevent or arrest infection and thus disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shraddha Parate ◽  
Shailima Rampogu ◽  
Gihwan Lee ◽  
Jong Chan Hong ◽  
Keun Woo Lee

Protein-protein interactions are indispensable physiological processes regulating several biological functions. Despite the availability of structural information on protein-protein complexes, deciphering their complex topology remains an outstanding challenge. Raf kinase inhibitory protein (RKIP) has gained substantial attention as a favorable molecular target for numerous pathologies including cancer and Alzheimer’s disease. RKIP interferes with the RAF/MEK/ERK signaling cascade by endogenously binding with C-Raf (Raf-1 kinase) and preventing its activation. In the current investigation, the binding of RKIP with C-Raf was explored by knowledge-based protein-protein docking web-servers including HADDOCK and ZDOCK and a consensus binding mode of C-Raf/RKIP structural complex was obtained. Molecular dynamics (MD) simulations were further performed in an explicit solvent to sample the conformations for when RKIP binds to C-Raf. Some of the conserved interface residues were mutated to alanine, phenylalanine and leucine and the impact of mutations was estimated by additional MD simulations and MM/PBSA analysis for the wild-type (WT) and constructed mutant complexes. Substantial decrease in binding free energy was observed for the mutant complexes as compared to the binding free energy of WT C-Raf/RKIP structural complex. Furthermore, a considerable increase in average backbone root mean square deviation and fluctuation was perceived for the mutant complexes. Moreover, per-residue energy contribution analysis of the equilibrated simulation trajectory by HawkDock and ANCHOR web-servers was conducted to characterize the key residues for the complex formation. One residue each from C-Raf (Arg398) and RKIP (Lys80) were identified as the druggable “hot spots” constituting the core of the binding interface and corroborated by additional long-time scale (300 ns) MD simulation of Arg398Ala mutant complex. A notable conformational change in Arg398Ala mutant occurred near the mutation site as compared to the equilibrated C-Raf/RKIP native state conformation and an essential hydrogen bonding interaction was lost. The thirteen binding sites assimilated from the overall analysis were mapped onto the complex as surface and divided into active and allosteric binding sites, depending on their location at the interface. The acquired information on the predicted 3D structural complex and the detected sites aid as promising targets in designing novel inhibitors to block the C-Raf/RKIP interaction.


2020 ◽  
Vol 21 (7) ◽  
pp. 2601 ◽  
Author(s):  
Shuang Zhao ◽  
Yan-Yan Zhu ◽  
Xiao-Yu Wang ◽  
Yong-Sheng Liu ◽  
Yun-Xiang Sun ◽  
...  

Sirtuin 6 (SIRT6) is an NAD+-dependent deacetylase with a significant role in 20% of all cancers, such as colon cancers and rectal adenocarcinoma. However, there is currently no effective drug for cancers related to SIRT6. To explore potential inhibitors of SIRT6, it is essential to reveal details of the interaction mechanisms between inhibitors and SIRT6 at the atomic level. The nature of small molecules from herbs have many advantages as inhibitors. Based on the conformational characteristics of the inhibitor Compound 9 (Asinex ID: BAS13555470), we explored the natural molecule Scutellarin, one compound of Huang Qin, which is an effective herb for curing cancer that has been described in the Traditional Chinese Medicine (TCMS) library. We investigated the interactions between SIRT6 and the inhibitors using molecular dynamics (MD) simulations. We illustrated that the structurally similar inhibitors have a similar binding mode to SIRT6 with residues—Leu9, Phe64, Val115, His133 and Trp188. Hydrophobic and π-stacking interactions play important roles in the interactions between SIRT6 and inhibitors. In summary, our results reveal the interactive mechanism of SIRT6 and the inhibitors and we also provide Scutellarin as a new potential inhibitor of SIRT6. Our study provides a new potential way to explore potential inhibitors from TCMS.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2621
Author(s):  
Seunghwa Yang

Here, we systematically interrogate the effects of grafting single-walled (SWNT) and multi-walled carbon nanotubes (MWNT) to polymer matrices by using molecular dynamics (MD) simulations. We specifically investigate key material properties that include interfacial load transfer, alteration of nanotube properties, and dispersion of nanotubes in the polymer matrix. Simulations are conducted on a periodic unit cell model of the nanocomposite with a straight carbon nanotube and an amorphous polyethylene terephthalate (PET) matrix. For each type of nanotube, either 0%, 1.55%, or 3.1% of the carbon atoms in the outermost nanotubes are covalently grafted onto the carbon atoms of the PET matrix. Stress-strain curves and the elastic moduli of nanotubes and nanocomposites are determined based on the density of covalent grafting. Covalent grafting promotes two rivalling effects with respect to altering nanotube properties, and improvements in interfacial load transfer in the nanocomposites are clearly observed. The enhanced interface enables external loads applied to the nanocomposites to be efficiently transferred to the grafted nanotubes. Covalent functionalization of the nanotube surface with PET molecules can alter the solubility of nanotubes and improve dispersibility. Finally, we discuss the current limitations and challenges in using molecular modelling strategies to accurately predict properties on the nanotube and polymers systems studied here.


2008 ◽  
Vol 32 ◽  
pp. 255-258
Author(s):  
Bohayra Mortazavi ◽  
Akbar Afaghi Khatibi

Molecular Dynamics (MD) are now having orthodox means for simulation of matter in nano-scale. It can be regarded as an accurate alternative for experimental work in nano-science. In this paper, Molecular Dynamics simulation of uniaxial tension of some face centered cubic (FCC) metals (namely Au, Ag, Cu and Ni) at nano-level have been carried out. Sutton-Chen potential functions and velocity Verlet formulation of Noise-Hoover dynamic as well as periodic boundary conditions were applied. MD simulations at different loading rates and temperatures were conducted, and it was concluded that by increasing the temperature, maximum engineering stress decreases while engineering strain at failure is increasing. On the other hand, by increasing the loading rate both maximum engineering stress and strain at failure are increasing.


2014 ◽  
Vol 1700 ◽  
pp. 61-66
Author(s):  
Guttormur Arnar Ingvason ◽  
Virginie Rollin

ABSTRACTAdding single walled carbon nanotubes (SWCNT) to a polymer matrix can improve the delamination properties of the composite. Due to the complexity of polymer molecules and the curing process, few 3-D Molecular Dynamics (MD) simulations of a polymer-SWCNT composite have been run. Our model runs on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), with a COMPASS (Condensed phase Optimized Molecular Potential for Atomistic Simulations Studies) potential. This potential includes non-bonded interactions, as well as bonds, angles and dihedrals to create a MD model for a SWCNT and EPON 862/DETDA (Diethyltoluenediamine) polymer matrix. Two simulations were performed in order to test the implementation of the COMPASS parameters. The first one was a tensile test on a SWCNT, leading to a Young’s modulus of 1.4 TPa at 300K. The second one was a pull-out test of a SWCNT from an originally uncured EPON 862/DETDA matrix.


2021 ◽  
Vol 12 ◽  
Author(s):  
Trina Ekawati Tallei ◽  
Fatimawali ◽  
Afriza Yelnetty ◽  
Rinaldi Idroes ◽  
Diah Kusumawaty ◽  
...  

The rapid spread of a novel coronavirus known as SARS-CoV-2 has compelled the entire world to seek ways to weaken this virus, prevent its spread and also eliminate it. However, no drug has been approved to treat COVID-19. Furthermore, the receptor-binding domain (RBD) on this viral spike protein, as well as several other important parts of this virus, have recently undergone mutations, resulting in new virus variants. While no treatment is currently available, a naturally derived molecule with known antiviral properties could be used as a potential treatment. Bromelain is an enzyme found in the fruit and stem of pineapples. This substance has been shown to have a broad antiviral activity. In this article, we analyse the ability of bromelain to counteract various variants of the SARS-CoV-2 by targeting bromelain binding on the side of this viral interaction with human angiotensin-converting enzyme 2 (hACE2) using molecular docking and molecular dynamics simulation approaches. We have succeeded in making three-dimensional configurations of various RBD variants using protein modelling. Bromelain exhibited good binding affinity toward various variants of RBDs and binds right at the binding site between RBDs and hACE2. This result is also presented in the modelling between Bromelain, RBD, and hACE2. The molecular dynamics (MD) simulations study revealed significant stability of the bromelain and RBD proteins separately up to 100 ns with an RMSD value of 2 Å. Furthermore, despite increases in RMSD and changes in Rog values of complexes, which are likely due to some destabilized interactions between bromelain and RBD proteins, two proteins in each complex remained bonded, and the site where the two proteins bind remained unchanged. This finding indicated that bromelain could have an inhibitory effect on different SARS-CoV-2 variants, paving the way for a new SARS-CoV-2 inhibitor drug. However, more in vitro and in vivo research on this potential mechanism of action is required.


1998 ◽  
Vol 540 ◽  
Author(s):  
J.M. Perlado ◽  
L. Malerba ◽  
T. Diaz De La Rubia

AbstractMolecular Dynamics (MD) simulations of neutron damage in β-SiC have been performed using a modified version of the Tersoff potential. The Threshold Displacement Energy (TDE) for Si and C atoms at 300 K has been determined along directions [001], [110], [111] and [ 1 1 1 ]. The existence of recombination barriers, which allow the formation of metastable, temperature-sensitive defects even below the threshold, has been observed. Displacement cascades produced by both C- and Si-recoils of energies spanning from 0.5 keV up to, respectively, 5 keV and 8 keV have also been simulated at 300 K and 1300 K. Their analysis, together with the analysis of damage accumulation (∼3.4×10-3 DPA) at 1300 K, reveals that the two sub-lattices exhibit opposite responses to irradiation: whereas only a little damage is produced on the “ductile” Si sub-lattice, many point-defects accumulate on the much more “fragile” C sub-lattice. A preliminary study of the nature and clustering tendency of these defects is performed. The possibility of disorder-induced amorphization is considered and the preliminary result is that no amorphization takes place at the dose and temperature simulated.


Sign in / Sign up

Export Citation Format

Share Document