scholarly journals Mitochondria-Microbiota Interaction in Neurodegeneration

2021 ◽  
Vol 13 ◽  
Author(s):  
Peter Kramer

Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.

INEOS OPEN ◽  
2020 ◽  
Vol 3 ◽  
Author(s):  
S. A. Sorokina ◽  
◽  
Yu. Yu. Stroilova ◽  
V. I. Muronets ◽  
Z. B. Shifrina ◽  
...  

Among the compounds able to efficiently inhibit the amyloid aggregation of proteins and decompose the amyloid aggregates that cause neurodegenerative diseases, of particular interest are dendrimers, which represent individual macromolecules with the hypercrosslinked architectures and given molecular parameters. This short review outlines the peculiarities of the antiamyloid activity of dendrimers and discusses the effect of dendrimer structures and external factors on their antiamyloid properties. The potential of application of dendrimers in further investigations on the aggregation processes of amyloid proteins as the compounds that exhibit the remarkable antiamyloid activity is evaluated.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zuzana Šišková ◽  
Marie-Ève Tremblay

A series of discoveries spanning for the last few years has challenged our view of microglial function, the main form of immune defense in the brain. The surveillance of neuronal circuits executed by each microglial cell overseeing its territory occurs in the form of regular, dynamic interactions. Microglial contacts with individual neuronal compartments, such as dendritic spines and axonal terminals, ensure that redundant or dysfunctional elements are recognized and eliminated from the brain. Microglia take on a new shape that is large and amoeboid when a threat to brain integrity is detected. In this defensive form, they migrate to the endangered sites, where they help to minimize the extent of the brain insult. However, in neurodegenerative diseases that are associated with misfolding and aggregation of synaptic proteins, these vital defensive functions appear to be compromised. Many microglial functions, such as phagocytosis, might be overwhelmed during exposure to the abnormal levels of misfolded proteins in their proximity. This might prevent them from attending to their normal duties, such as the stripping of degenerating synaptic terminals, before neuronal function is irreparably impaired. In these conditions microglia become chronically activated and appear to take on new, destructive roles by direct or indirect inflammatory attack.


BIOspektrum ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 588-590
Author(s):  
Zeeshan Mushtaq ◽  
Jan Pielage

AbstractThe precise regulation of synaptic connectivity is essential for the processing of information in the brain. Any aberrant loss of synaptic connectivity due to genetic mutations will disrupt information flow in the nervous system and may represent the underlying cause of psychiatric or neurodegenerative diseases. Therefore, identification of the molecular mechanisms controlling synaptic plasticity and maintenance is essential for our understanding of neuronal circuits in development and disease.


2018 ◽  
Author(s):  
Inés González-Calvo ◽  
Fekrije Selimi

AbstractMany proteins initially identified in the immune system play roles in neurogenesis, neuronal migration, axon guidance, synaptic plasticity and other processes related to the formation and refinement of neural circuits. Although the function of the immune-related protein Galectin-3 (LGALS3) has been extensively studied in the regulation of inflammation, cancer and microglia activation, little is known about its role in the development of the brain. In this study, we identified that LGALS3 is expressed in the developing postnatal cerebellum. More precisely, LGALS3 is expressed by cells in meninges and in the choroid plexus, and in subpopulations of astrocytes and of microglial cells in the cerebellar cortex. Analysis of Lgals3 knockout mice showed that Lgals3 is dispensable for the development of cerebellar cytoarchitecture and Purkinje cell excitatory synaptogenesis in the mouse.


2021 ◽  
Author(s):  
◽  
Ivan Maximiliano Kur

Cellular communication is a concept that can be explained as the transfer of signals or material (such as cytokines, ions, small molecules) between cells from the same or different type, across either short or long distances. Once this signal or material is received, it will, as a rule, promote a functional effect. Several routes, involved in this transfer, are well described and are of global importance for organ/tissue communication in an organism. The brain interacts dynamically with the immune system, and the main route known to mediate this communication, is via the release of cytokines (by peripheral blood cells), which can then activate certain brain cell types, such as microglia, directly, or activate the vagus nerve transferring signals to neuronal populations in the brain. The communication between these two systems plays a key role in the pathophysiology of neurodegenerative diseases, and the mechanisms involved in this interaction are of central importance for understanding disease initiation and progression and search for therapeutic models. The Momma lab previously addressed the mechanisms of interaction between the peripheral immune system and the brain by investigating cellular fusion of haematopoietic cells with neurons after inflammation. They addressed the question of whether this phenomenon also occurs under non-invasive conditions. To approach this problem, a genetic tracing model that relies on the Cre-Lox recombination system was used. Transgenic mice expressing Cre recombinase specifically in the haematopoietic lineage were crossed into a Cre-reporter background, thus all haematopoietic cells irreversibly express the reporter marker-gene EYFP. Using this model, EYFP was detected in non-haematopoietic tissues, suggesting the existence of a communication mechanism never described before. As cells containing two nuclei were never detected, fusion as a mechanism was excluded, suggesting that Cre reaches non-haematopoietic cells via a different signalling pathway. The Momma lab investigated whether the transfer of material through extracellular vesicles (EVs) could be behind this periphery-to-brain communication. Using the genetic mouse model, they were able to trace the transfer of Cre RNA via EVs between cells in vivo, generating the first in vivo evidence of functional RNA transfer by EVs between blood and brain. The last decade has witnessed a rapid expansion of the field of EVs. Initially considered as waste disposal material, recent evidence has challenged this view. EVs are currently considered as a widespread intercellular communication system that can transport and transfer all types of biomolecules, from nucleic acids to lipids and proteins. However, several important questions are still under investigation. One of them is whether EVs are involved in brain pathophysiology, as inflammation plays an important role in onset and progression of neurodegenerative diseases and is well described in Parkinson Disease (PD). Based on preliminary data in a mouse, peripherally injected with a low dose of Lipopolysaccharide (LPS, an endotoxin found in the outer-membrane of Gram-negative bacteria, which causes an immune response), neurons and other cell population in the brain take up EVs from the periphery. Particularly, dopaminergic neurons from Substantia Nigra and Ventral Tegmental Area have been shown to receive functional RNA, transported through EVs, which can lead up to 20% of recombination. Furthermore, different neuronal populations from Hippocampus, Cortex and Cerebellum exhibit recombination, indicating a widespread signalling from blood to the brain. Therefore, the goal of my PhD thesis was to investigate the mechanisms of this transfer and the triggers that lead to EV uptake by neural cells in vivo both in pathological and physiological conditions. In this project, the extent and function of EV-mediated signalling from blood to brain is explored in the context of peripheral inflammation and neurodegenerative diseases. Firstly, EVs isolated from WT mice were further characterized using size-exclusion chromatography (SEC), Western Blot (WB) and electron microscopy in order to extend the knowledge from previous work done in the Momma lab. Secondly, to expand on the biological relevance of the fact that inflammation is correlated with an increase in EV uptake, different approaches using the genetic murine tracing model were used. Recombination events from haematopoietic cells to the brain have been followed after peripheral injection of LPS. Peripheral inflammation caused by LPS injection led to widespread recombination events in the brain, specifically in microglia and neurons, including dopaminergic (DA) neurons. In contrast, astrocytes, oligodendrocytes and endothelial cells were never or very rarely recombined. Additionally, peripheral LPS injection in a murine model, where Cre is expressed only in erythrocytes, led to recombination events only in microglia, suggesting that the type of EV-secreting cell plays a role in the targeting of EVs to a specific cell population.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2021 ◽  
Vol 16 ◽  
pp. 263310552110187
Author(s):  
Christopher D Link

Numerous studies have identified microbial sequences or epitopes in pathological and non-pathological human brain samples. It has not been resolved if these observations are artifactual, or truly represent population of the brain by microbes. Given the tempting speculation that resident microbes could play a role in the many neuropsychiatric and neurodegenerative diseases that currently lack clear etiologies, there is a strong motivation to determine the “ground truth” of microbial existence in living brains. Here I argue that the evidence for the presence of microbes in diseased brains is quite strong, but a compelling demonstration of resident microbes in the healthy human brain remains to be done. Dedicated animal models studies may be required to determine if there is indeed a “brain microbiome.”


Sign in / Sign up

Export Citation Format

Share Document