scholarly journals Expression and role of Galectin-3 in the postnatal development of the cerebellum

2018 ◽  
Author(s):  
Inés González-Calvo ◽  
Fekrije Selimi

AbstractMany proteins initially identified in the immune system play roles in neurogenesis, neuronal migration, axon guidance, synaptic plasticity and other processes related to the formation and refinement of neural circuits. Although the function of the immune-related protein Galectin-3 (LGALS3) has been extensively studied in the regulation of inflammation, cancer and microglia activation, little is known about its role in the development of the brain. In this study, we identified that LGALS3 is expressed in the developing postnatal cerebellum. More precisely, LGALS3 is expressed by cells in meninges and in the choroid plexus, and in subpopulations of astrocytes and of microglial cells in the cerebellar cortex. Analysis of Lgals3 knockout mice showed that Lgals3 is dispensable for the development of cerebellar cytoarchitecture and Purkinje cell excitatory synaptogenesis in the mouse.


2021 ◽  
Vol 10 (5) ◽  
pp. 1131
Author(s):  
Magdalena Chmielińska ◽  
Marzena Olesińska ◽  
Katarzyna Romanowska-Próchnicka ◽  
Dariusz Szukiewicz

Haptoglobin (Hp) is an acute phase protein which supports the immune response and protects tissues from free radicals. Its concentration correlates with disease activity in spondyloarthropathies (SpAs). The Hp polymorphism determines the functional differences between Hp1 and Hp2 protein products. The role of the Hp polymorphism has been demonstrated in many diseases. In particular, the Hp 2-2 phenotype has been associated with the unfavorable course of some inflammatory and autoimmune disorders. Its potential role in modulating the immune system in SpA is still unknown. This article contains pathophysiological considerations on the potential relationship between Hp, its polymorphism and SpA.



2016 ◽  
Vol 48 (8) ◽  
pp. 652-668 ◽  
Author(s):  
Ana Cicvaric ◽  
Jiaye Yang ◽  
Sigurd Krieger ◽  
Deeba Khan ◽  
Eun-Jung Kim ◽  
...  


2020 ◽  
Vol 11 (3) ◽  
pp. 3807-3812
Author(s):  
Aziez Chettoum ◽  
Kamilia Guedri ◽  
Zouhir Djerrou ◽  
Rachid Mosbah ◽  
Latifa Khattabi ◽  
...  

Psychoneuroimmunology or the study of the relationships between the brain and the immune system is an area of research that has experienced significant development over the decade. Stress does not appear without consequences on the state of health, the role of fears, emotions and significant constraints in the appearance of organic and mental diseases. In this research, we studied the effect of stress and anxiety during exams at the end of the academic year (2018/2019) on the distribution of leukocyte subpopulations and the immune system, questionnaires has been completed by student volunteers, to estimate the anxio-depressive comorbidities through the (HADS) test during and outside exams, and in the same time we asked them for a blood sample the next morning day to carry out some biological assays (CBC). We also found that stress during exams caused a change in the distribution of different types of white blood cells, a total decrease in white blood cell counts with neutropenia and lymphopenia were found in students during exams compared to controls, and an increase in monocyte and other types of polymorphonuclear levels in students during exams compared to controls. Other tests measuring the effects of stress on specific functions of the immune system can be used.



2021 ◽  
Author(s):  
Wafa Abdelghaffar ◽  
Oussama Sidhom ◽  
Lilia Laadhar ◽  
Rym Rafrafi

The involvement of immunity in the pathogenesis of schizophrenia and related psychoses was suspected a century ago but was shadowed by the dopaminergic hypothesis after the discovery of antipsychotics. We currently know that this latter theory has many limits and cannot account for the wide variety of psychotic conditions. The immune-inflammatory theory is now one of the most promising axes of research in terms of pathogenesis of several mental health conditions. Immunity and inflammation play a role at least in a subgroup of patients with psychosis. The immune system is complex with a variety of components and mediators that can all have effects on the brain and thus mediate psychiatric symptoms. In this chapter we will explore the scientific evidence of the role of immune system in pathophysiology of psychosis. The sections of this chapter will discuss the role of innate system components (cytokines, microglia, inflammation.), the role of adaptive system (lymphocytes and antibodies) with a section focusing on auto-immunity and particularly antineuronal antibodies. Finally we will discuss how this research can impact patients management and elaborate recommendations for future research.





Author(s):  
Patricia S. Churchland ◽  
Terrence J. Sejnowski

This chapter examines the physical mechanisms in nervous systems in order to elucidate the structural bases and functional principles of synaptic plasticity. Neuroscientific research on plasticity can be divided into four main streams: the neural mechanism for relatively simple kinds of plasticity, such as classical conditioning or habituation; anatomical and physiological studies of temporal lobe structures, including the hippocampus and the amygdala; study of the development of the visual system; and the relation between the animal's genes and the development of its nervous system. The chapter first considers the role of the mammalian hippocampus in learning and memory before discussing Donald Hebb's views on synaptic plasticity. It then explores the mechanisms underlying neuronal plasticity and those that decrease synaptic strength, the relevance of time with respect to plasticity, and the occurrence of plasticity during the development of the nervous system. It also describes modules, modularity, and networks in the brain.



2019 ◽  
Vol 20 (7) ◽  
pp. 1632 ◽  
Author(s):  
Michelle Erickson ◽  
William Banks

Age is associated with altered immune functions that may affect the brain. Brain barriers, including the blood–brain barrier (BBB) and blood–CSF barrier (BCSFB), are important interfaces for neuroimmune communication, and are affected by aging. In this review, we explore novel mechanisms by which the aging immune system alters central nervous system functions and neuroimmune responses, with a focus on brain barriers. Specific emphasis will be on recent works that have identified novel mechanisms by which BBB/BCSFB functions change with age, interactions of the BBB with age-associated immune factors, and contributions of the BBB to age-associated neurological disorders. Understanding how age alters BBB functions and responses to pathological insults could provide important insight on the role of the BBB in the progression of cognitive decline and neurodegenerative disease.



2021 ◽  
Vol 15 ◽  
Author(s):  
Giasuddin Ahmed ◽  
Yohei Shinmyo

Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.



2021 ◽  
Vol 13 ◽  
Author(s):  
Peter Kramer

Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.



2021 ◽  
Vol 17 (2) ◽  
pp. e1008700
Author(s):  
Yoshiki Ito ◽  
Taro Toyoizumi

Traveling waves are commonly observed across the brain. While previous studies have suggested the role of traveling waves in learning, the mechanism remains unclear. We adopted a computational approach to investigate the effect of traveling waves on synaptic plasticity. Our results indicate that traveling waves facilitate the learning of poly-synaptic network paths when combined with a reward-dependent local synaptic plasticity rule. We also demonstrate that traveling waves expedite finding the shortest paths and learning nonlinear input/output mapping, such as exclusive or (XOR) function.



Sign in / Sign up

Export Citation Format

Share Document