scholarly journals Drugs of Abuse Differentially Alter the Neuronal Excitability of Prefrontal Layer V Pyramidal Cell Subtypes

2021 ◽  
Vol 15 ◽  
Author(s):  
Jonna M. Leyrer-Jackson ◽  
Lauren E. Hood ◽  
M. Foster Olive

The medial prefrontal cortex (mPFC) plays an important role in regulating executive functions including reward seeking, task flexibility, and compulsivity. Studies in humans have demonstrated that drugs of abuse, including heroin, cocaine, methamphetamine, and alcohol, alter prefrontal function resulting in the consequential loss of inhibitory control and increased compulsive behaviors, including drug seeking. Within the mPFC, layer V pyramidal cells, which are delineated into two major subtypes (type I and type II, which project to subcortical or commissurally to other cortical regions, respectively), serve as the major output cells which integrate information from other cortical and subcortical regions and mediate executive control. Preclinical studies examining changes in cellular physiology in the mPFC in response to drugs of abuse, especially in regard to layer V pyramidal subtypes, are relatively sparse. In the present study, we aimed to explore how heroin, cocaine, methamphetamine, ethanol, and 3,4-methylenedioxypyrovalerone (MDPV) alter the baseline cellular physiology and excitability properties of layer V pyramidal cell subtypes. Specifically, animals were exposed to experimenter delivered [intraperitoneal (i.p.)] heroin, cocaine, the cocaine-like synthetic cathinone MDPV, methamphetamine, ethanol, or saline as a control once daily for five consecutive days. On the fifth day, whole-cell physiology recordings were conducted from type I and type II layer V pyramidal cells in the mPFC. Changes in cellular excitability, including rheobase (i.e., the amount of injected current required to elicit action potentials), changes in input/output curves, as well as spiking characteristics induced by each substance, were assessed. We found that heroin, cocaine, methamphetamine, and MDPV decreased the excitability of type II cells, whereas ethanol increased the excitability of type I pyramidal cells. Together, these results suggest that heroin, cocaine, MDPV, and methamphetamine reduce mPFC commissural output by reducing type II excitability, while ethanol increases the excitability of type I cells targeting subcortical structures. Thus, separate classes of abused drugs differentially affect layer V pyramidal subtypes in the mPFC, which may ultimately give rise to compulsivity and inappropriate synaptic plasticity underlying substance use disorders.

2005 ◽  
Vol 94 (5) ◽  
pp. 3357-3367 ◽  
Author(s):  
Elodie Christophe ◽  
Nathalie Doerflinger ◽  
Daniel J. Lavery ◽  
Zoltán Molnár ◽  
Serge Charpak ◽  
...  

Previous studies have shown that layer V pyramidal neurons projecting either to subcortical structures or the contralateral cortex undergo different morphological and electrophysiological patterns of development during the first three postnatal weeks. To isolate the determinants of this differential maturation, we analyzed the gene expression and intrinsic membrane properties of layer V pyramidal neurons projecting either to the superior colliculus (SC cells) or the contralateral cortex (CC cells) by combining whole cell recordings and single-cell RT-PCR in acute slices prepared from postnatal day (P) 5–7 or P21–30 old mice. Among the 24 genes tested, the calcium channel subunits α1B and α1C, the protease Nexin 1, and the calcium-binding protein calbindin were differentially expressed in adult SC and CC cells and the potassium channel subunit Kv4.3 was expressed preferentially in CC cells at both stages of development. Intrinsic membrane properties, including input resistance, amplitude of the hyperpolarization-activated current, and action potential threshold, differed quantitatively between the two populations as early as from the first postnatal week and persisted throughout adulthood. However, the two cell types had similar regular action potential firing behaviors at all developmental stages. Surprisingly, when we increased the duration of anesthesia with ketamine–xylazine or pentobarbital before decapitation, a proportion of mature SC cells, but not CC cells, fired bursts of action potentials. Together these results indicate that the two populations of layer V pyramidal neurons already start to differ during the first postnatal week and exhibit different firing capabilities after anesthesia.


2004 ◽  
Vol 15 (2) ◽  
pp. 761-773 ◽  
Author(s):  
Chun-Yang Fan ◽  
Soojin Lee ◽  
Hong-Yu Ren ◽  
Douglas M. Cyr

Hsp40 family members regulate Hsp70s ability to bind nonnative polypeptides and thereby play an essential role in cell physiology. Type I and type II Hsp40s, such as yeast Ydj1 and Sis1, form chaperone pairs with cytosolic Hsp70 Ssa1 that fold proteins with different efficiencies and carry out specific cellular functions. The mechanism by which Ydj1 and Sis1 specify Hsp70 functions is not clear. Ydj1 and Sis1 share a high degree of sequence identity in their amino and carboxyl terminal ends, but each contains a structurally unique and centrally located protein module that is implicated in chaperone function. To test whether the chaperone modules of Ydj1 and Sis1 function in the specification of Hsp70 action, we constructed a set of chimeric Hsp40s in which the chaperone domains of Ydj1 and Sis1 were swapped to form YSY and SYS. Purified SYS and YSY exhibited protein-folding activity and substrate specificity that mimicked that of Ydj1 and Sis1, respectively. In in vivo studies, YSY exhibited a gain of function and, unlike Ydj1, could complement the lethal phenotype of sis1Δ and facilitate maintenance of the prion [RNQ+]. Ydj1 and Sis1 contain exchangeable chaperone modules that assist in specification of Hsp70 function.


2016 ◽  
Vol 116 (2) ◽  
pp. 232-251 ◽  
Author(s):  
Atthaphon Viriyopase ◽  
Raoul-Martin Memmesheimer ◽  
Stan Gielen

Oscillations of neuronal activity in different frequency ranges are thought to reflect important aspects of cortical network dynamics. Here we investigate how various mechanisms that contribute to oscillations in neuronal networks may interact. We focus on networks with inhibitory, excitatory, and electrical synapses, where the subnetwork of inhibitory interneurons alone can generate interneuron gamma (ING) oscillations and the interactions between interneurons and pyramidal cells allow for pyramidal-interneuron gamma (PING) oscillations. What type of oscillation will such a network generate? We find that ING and PING oscillations compete: The mechanism generating the higher oscillation frequency “wins”; it determines the frequency of the network oscillation and suppresses the other mechanism. For type I interneurons, the network oscillation frequency is equal to or slightly above the higher of the ING and PING frequencies in corresponding reduced networks that can generate only either of them; if the interneurons belong to the type II class, it is in between. In contrast to ING and PING, oscillations mediated by gap junctions and oscillations mediated by inhibitory synapses may cooperate or compete, depending on the type (I or II) of interneurons and the strengths of the electrical and chemical synapses. We support our computer simulations by a theoretical model that allows a full theoretical analysis of the main results. Our study suggests experimental approaches to deciding to what extent oscillatory activity in networks of interacting excitatory and inhibitory neurons is dominated by ING or PING oscillations and of which class the participating interneurons are.


2000 ◽  
Vol 83 (6) ◽  
pp. 3287-3293 ◽  
Author(s):  
Nathalie Auclair ◽  
Satoru Otani ◽  
Philippe Soubrie ◽  
Francis Crepel

Cannabinoids receptors have been reported to modulate synaptic transmission in many structures of the CNS, but yet little is known about their role in the prefrontal cortex where type I cannabinoid receptor (CB-1) are expressed. In this study, we tested first the acute effects of selective agonists and antagonist of CB-1 on glutamatergic excitatory postsynaptic currents (EPSCs) in slices of rat prefrontal cortex (PFC). EPSCs were evoked in patch-clamped layer V pyramidal cells by stimulation of layer V afferents. Monosynaptic EPSCs were strongly depressed by bath application (1 μM) of the cannabinoid receptors agonists WIN55212-2 (−50.4 ± 8.8%) and CP55940 (−42.4 ± 10.9%). The CB-1 antagonist SR141716A reversed these effects. Unexpectedly, SR141716A alone produced a significant increase of glutamatergic synaptic transmission (+46.9 ± 11.2%), which could be partly reversed by WIN55212-2. In the presence of strontium in the bath, the frequency but not the amplitude of asynchronous synaptic events evoked in layer V pyramidal cells by stimulating layer V afferents, was markedly decreased (−54.2 ± 8%), indicating a presynaptic site of action of cannabinoids at these synapses. Tetanic stimulation (100 pulses at 100 Hz, 4 trains) induced in control condition, no changes ( n = 7/18), long-term depression (LTD; n = 6/18), or long-term potentiation (LTP; n = 5/18) of monosynaptic EPSCs evoked by stimulation of layer V afferents. When tetanus was applied in the presence of WIN 55,212-2 or SR141716-A (1 μM) in the bath, the proportion of “nonplastic” cells were not significantly changed ( n = 7/15 in both cases). For the plastic ones ( n = 8 in both cases), WIN 55,212-2 strongly favored LTD ( n = 7/8) at the apparent expense of LTP ( n = 1/8), whereas the opposite effect was observed with SR141716-A (7/8 LTP; 1/8 LTD). These results demonstrate that cannabinoids influence glutamatergic synaptic transmission and plasticity in the PFC of rodent.


2008 ◽  
Vol 86 (14) ◽  
pp. 3151-3162 ◽  
Author(s):  
Véronique M. André ◽  
Carlos Cepeda ◽  
Harry V. Vinters ◽  
My Huynh ◽  
Gary W. Mathern ◽  
...  

2014 ◽  
Vol 197 (4) ◽  
pp. 749-761 ◽  
Author(s):  
M. A. Serbanescu ◽  
M. Cordova ◽  
K. Krastel ◽  
R. Flick ◽  
N. Beloglazova ◽  
...  

CRISPR-Cas systems provide adaptive microbial immunity against invading viruses and plasmids. The cariogenic bacteriumStreptococcus mutansUA159 has two CRISPR-Cas systems: CRISPR1 (type II-A) and CRISPR2 (type I-C) with several spacers from both CRISPR cassettes matching sequences of phage M102 or genomic sequences of otherS. mutans. The deletion of thecasgenes of CRISPR1 (ΔC1S), CRISPR2 (ΔC2E), or both CRISPR1+2 (ΔC1SC2E) or the removal of spacers 2 and 3 (ΔCR1SP13E) inS. mutansUA159 did not affect phage sensitivity when challenged with virulent phage M102. Using plasmid transformation experiments, we demonstrated that the CRISPR1-Cas system inhibits transformation ofS. mutansby the plasmids matching the spacers 2 and 3. Functional analysis of thecasdeletion mutants revealed that in addition to a role in plasmid targeting, both CRISPR systems also contribute to the regulation of bacterial physiology inS. mutans. Compared to wild-type cells, the ΔC1S strain displayed diminished growth under cell membrane and oxidative stress, enhanced growth under low pH, and had reduced survival under heat shock and DNA-damaging conditions, whereas the ΔC2E strain exhibited increased sensitivity to heat shock. Transcriptional analysis revealed that the two-component signal transduction system VicR/K differentially modulates expression ofcasgenes within CRISPR-Cas systems, suggesting that VicR/K might coordinate the expression of two CRISPR-Cas systems. Collectively, we providein vivoevidence that the type II-A CRISPR-Cas system ofS. mutansmay be targeted to manipulate its stress response and to influence the host to control the uptake and dissemination of antibiotic resistance genes.


2003 ◽  
Vol 90 (5) ◽  
pp. 3429-3440 ◽  
Author(s):  
Jianli Li ◽  
William Guido ◽  
Martha E. Bickford

The lateral posterior nucleus (LPN) is innervated by two different morphological types of cortical terminals that originate from cortical layers V and VI. Here we describe two distinct types of excitatory postsynaptic potentials (EPSPs) that were recorded in the LPN after stimulation of corticothalamic fibers. These types of EPSPs differed in amplitude, latency, rise time, and response to increasing levels of stimulus intensity. The most frequently encountered EPSP, type I, displayed a longer latency and slower rise time than the less frequently encountered type II EPSP. Type I EPSPs also showed a graded increase in amplitude with increasing levels of stimulation, whereas type II EPSPs showed an all-or-none response. In response to repetitive stimulation (0.5-20 Hz), type I EPSPs displayed frequency-dependent facilitation, whereas type II EPSPs displayed frequency-dependent depression. Further details of these distinct forms of short-term synaptic plasticity were explored using paired-pulse stimuli. Pharmacology experiments revealed that both N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors are involved in corticothalamic synaptic transmission in the LPN and contribute to both synaptic facilitation and depression. Taken together with the results of our previous anatomical studies, these results suggest that type I EPSPs arise from stimulation of layer VI afferents, whereas type II EPSPs arise from stimulation of layer V inputs. Moreover, type I and II EPSPs in the LPN may be functionally similar to corticogeniculate and retinogeniculate EPSPs, respectively.


1991 ◽  
Vol 66 (1) ◽  
pp. 2-11 ◽  
Author(s):  
S. Ozawa ◽  
M. Iino ◽  
K. Tsuzuki

1. Two different types of kainate response were recorded in cultured rat hippocampal neurons with the use of the whole-cell and outside-out configurations of the patch-clamp technique. 2. There was an outward rectification in the current-voltage (I-V) plot of the kainate-induced current (type I response) in relatively large neurons bearing a morphological resemblance to young pyramidal cells. In smaller neurons with elliptical somata and fine neurites, the kainate response was characterized by a remarkable inward rectification in the I-V plot of the kainate-induced current and a significant permeability to Ca2+ (type II response). 3. Both type I and type II responses were negligible below 2 microM and almost saturated at 500 microM kainate. The concentrations producing half-maximal responses and the Hill coefficients were 68 microM and 1.76 and 56 microM and 1.21 for type I and type II responses, respectively. Both responses were suppressed similarly by the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). 4. The mean single-channel conductance (gamma) of the type II kainate response was estimated, from the relation between the whole-cell mean currents and current variances, to be 8.7 pS. The power spectrum for the current noise was fitted with the sum of two Lorentzians with cutoff frequencies (fc) of 61.1 +/- 1.4 and 327.8 +/- 10.5 Hz (n = 12).(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 103 (5) ◽  
pp. 2876-2888 ◽  
Author(s):  
Yuko Koyanagi ◽  
Kiyofumi Yamamoto ◽  
Yoshiyuki Oi ◽  
Noriaki Koshikawa ◽  
Masayuki Kobayashi

β-Adrenoceptors play a crucial role in the regulation of taste aversion learning in the insular cortex (IC). However, β-adrenergic effects on inhibitory synaptic transmission mediated by γ-aminobutyric acid (GABA) remain unknown. To elucidate the mechanisms of β-adrenergic modulation of inhibitory synaptic transmission, we performed paired whole cell patch-clamp recordings from layer V GABAergic interneurons and pyramidal cells of rat IC aged from postnatal day 17 (PD17) to PD46 and examined the effects of isoproterenol, a β-adrenoceptor agonist, on unitary inhibitory postsynaptic currents (uIPSCs). Isoproterenol (100 μM) induced facilitating effects on uIPSCs in 33.3% of cell pairs accompanied by decreases in coefficient of variation (CV) of the first uIPSC amplitude and paired-pulse ratio (PPR) of the second to first uIPSC amplitude, whereas 35.9% of pairs showed suppressive effects of isoproterenol on uIPSC amplitude obtained from fast spiking (FS) to pyramidal cell pairs. Facilitatory effects of isoproterenol were frequently observed in FS–pyramidal cell pairs at ≥PD24. On the other hand, isoproterenol suppressed uIPSC amplitude by 52.3 and 39.8% in low-threshold spike (LTS)–pyramidal and late spiking (LS)–pyramidal cell pairs, respectively, with increases in CV and PPR. The isoproterenol-induced suppressive effects were blocked by preapplication of 100 μM propranolol, a β-adrenoceptor antagonist. There was no significant correlation between age and changes of uIPSCs in LTS–/LS–pyramidal cell pairs. These results suggest the presence of differential mechanisms in presynaptic GABA release and/or postsynaptic GABAA receptor-related assemblies among interneuron subtypes. Age- and interneuron subtype-specific β-adrenergic modulation of IPSCs may contribute to experience-dependent plasticity in the IC.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Sign in / Sign up

Export Citation Format

Share Document