scholarly journals Cost-Consequence Analysis of Advanced Imaging in Acute Ischemic Stroke Care

2021 ◽  
Vol 12 ◽  
Author(s):  
Artem T. Boltyenkov ◽  
Gabriela Martinez ◽  
Ankur Pandya ◽  
Jeffrey M. Katz ◽  
Jason J. Wang ◽  
...  

Introduction: The purpose of this study was to illustrate the potential costs and health consequences of implementing advanced CT angiography and perfusion (CTAP) as the initial imaging in patients presenting with acute ischemic stroke (AIS) symptoms at a comprehensive stroke center (CSC).Methods: A decision-simulation model based on the American Heart Association's recommendations for AIS care pathways was developed to assess imaging strategies for a 5-year period from the institutional perspective. The following strategies were compared: (1) advanced CTAP imaging: NCCT + CTA + CT perfusion at the time of presentation; (2) standard-of-care: non-contrast CT (NCCT) at the time of presentation, with CT angiography (CTA) ± CT perfusion only in select patients (initial imaging to exclude hemorrhage and extensive ischemia) for mechanical thrombectomy (MT) evaluation. Model parameters were defined with evidence-based data. Cost-consequence and sensitivity analyses were performed. The modified Rankin Scale (mRS) at 90 days was used as the outcome measure.Results: The decision-simulation modeling revealed that adoption of the advanced CTAP imaging increased per-patient imaging costs by 1.19% ($9.28/$779.72), increased per-patient treatment costs by 33.25% ($729.96/$2,195.24), and decreased other per-patient acute care costs by 0.7% (–$114.12/$16,285.85). The large increase in treatment costs was caused by higher proportion of patients being treated. However, improved outcomes lowered the other per-patient acute care costs. Over the five-year period, advanced CTAP imaging led to 1.63% (66/4,040) more patients with good outcomes (90-day mRS 0-2), 2.23% (66/2,960) fewer patients with poor outcomes (90-day mRS 3-5), and no change in mortality (90-day mRS 6). Our CT equipment utilization analysis showed that the demand for CT equipment in terms of scanner time (minutes) was 24% lower in the advanced CTAP imaging strategy compared to the standard-of-care strategy. The number of EVT procedures performed at the CSC may increase by 50%.Conclusions: Our study reveals that adoption of advanced CTAP imaging at presentation increases the demand for treatment of acute ischemic stroke patients as more patients are diagnosed within the treatment time window compared to standard-of-care imaging. Advanced imaging also leads to more patients with good functional outcomes and fewer patients with dependent functional status.

2020 ◽  
Vol 132 (4) ◽  
pp. 1182-1187 ◽  
Author(s):  
Carrie E. Andrews ◽  
Nikolaos Mouchtouris ◽  
Evan M. Fitchett ◽  
Fadi Al Saiegh ◽  
Michael J. Lang ◽  
...  

OBJECTIVEMechanical thrombectomy (MT) is now the standard of care for acute ischemic stroke (AIS) secondary to large-vessel occlusion, but there remains a question of whether elderly patients benefit from this procedure to the same degree as the younger populations enrolled in the seminal trials on MT. The authors compared outcomes after MT of patients 80–89 and ≥ 90 years old with AIS to those of younger patients.METHODSThe authors retrospectively analyzed records of patients undergoing MT at their institution to examine stroke severity, comorbid conditions, medical management, recanalization results, and clinical outcomes. Univariate and multivariate logistic regression analysis were used to compare patients < 80 years, 80–89 years, and ≥ 90 years old.RESULTSAll groups had similar rates of comorbid disease and tissue plasminogen activator (tPA) administration, and stroke severity did not differ significantly between groups. Elderly patients had equivalent recanalization outcomes, with similar rates of readmission, 30-day mortality, and hospital-associated complications. These patients were more likely to have poor clinical outcome on discharge, as defined by a modified Rankin Scale (mRS) score of 3–6, but this difference was not significant when controlled for stroke severity, tPA administration, and recanalization results.CONCLUSIONSOctogenarians, nonagenarians, and centenarians with AIS have similar rates of mortality, hospital readmission, and hospital-associated complications as younger patients after MT. Elderly patients also have the capacity to achieve good functional outcome after MT, but this potential is moderated by stroke severity and success of treatment.


2020 ◽  
pp. 028418512098177
Author(s):  
Yu Lin ◽  
Nannan Kang ◽  
Jianghe Kang ◽  
Shaomao Lv ◽  
Jinan Wang

Background Color-coded multiphase computed tomography angiography (mCTA) can provide time-variant blood flow information of collateral circulation for acute ischemic stroke (AIS). Purpose To compare the predictive values of color-coded mCTA, conventional mCTA, and CT perfusion (CTP) for the clinical outcomes of patients with AIS. Material and Methods Consecutive patients with anterior circulation AIS were retrospectively reviewed at our center. Baseline collateral scores of color-coded mCTA and conventional mCTA were assessed by a 6-point scale. The reliabilities between junior and senior observers were assessed by weighted Kappa coefficients. Receiver operating characteristic (ROC) curves and multivariate logistic regression model were applied to evaluate the predictive capabilities of color-coded mCTA and conventional mCTA scores, and CTP parameters (hypoperfusion and infarct core volume) for a favorable outcome of AIS. Results A total of 138 patients (including 70 cases of good outcomes) were included in our study. Patients with favorable prognoses were correlated with better collateral circulations on both color-coded and conventional mCTA, and smaller hypoperfusion and infarct core volume (all P < 0.05) on CTP. ROC curves revealed no significant difference between the predictive capability of color-coded and conventional mCTA ( P = 0.427). The predictive value of CTP parameters tended to be inferior to that of color-coded mCTA score (all P < 0.001). Both junior and senior observers had consistently excellent performances (κ = 0.89) when analyzing color-coded mCTA maps. Conclusion Color-coded mCTA provides prognostic information of patients with AIS equivalent to or better than that of conventional mCTA and CTP. Junior radiologists can reach high diagnostic accuracy when interpreting color-coded mCTA images.


2021 ◽  
pp. neurintsurg-2021-017940
Author(s):  
Zeguang Ren ◽  
Gaoting Ma ◽  
Maxim Mokin ◽  
Ashutosh P Jadhav ◽  
Baixue Jia ◽  
...  

BackgroudThe goal of this study was to determine if the choice of imaging paradigm performed in the emergency department influences the procedural or clinical outcomes after mechanical thrombectomy (MT).MethodsThis is a retrospective comparative outcome study which was conducted from the ANGEL-ACT registry. Comparisons were made between baseline characteristics and clinical outcomes of patients with acute ischemic stroke undergoing MT with non-contrast head computed tomography (NCHCT) alone versus patients undergoing NCHCT plus non-invasive vessel imaging (NVI) (including CT angiography (with or without CT perfusion) and magnetic resonance angiography). The primary outcome was the modified Rankin Scale (mRS) score at 90 days. Secondary outcomes included change in mRS score from baseline to 90 days, the proportions of mRS 0–1, 0–2, and 0–3, and dramatic clinical improvement at 24 hours. The safety outcomes were any intracranial hemorrhage (ICH), symptomatic ICH, and mortality within 90 days.ResultsA total of 894 patients met the inclusion criteria; 476 (53%) underwent NCHCT alone and 418 (47%) underwent NCHCT + NVI. In the NCHCT alone group, the door-to-reperfusion time was shorter by 47 min compared with the NCHCT + NVI group (219 vs 266 min, P<0.001). Patients in the NCHCT alone group showed a smaller increase in baseline mRS score at 90 days (median 3 vs 2 points; P=0.004) after adjustment. There were no significant differences between groups in the remaining clinical outcomes.ConclusionsIn patients selected for MT using NCHCT alone versus NCHCT + NVI, there were improved procedural outcomes and smaller increases in baseline mRS scores at 90 days.


Author(s):  
Marta Olive‐Gadea ◽  
Manuel Requena ◽  
Facundo Diaz ◽  
Alvaro Garcia‐Tornel ◽  
Marta Rubiera ◽  
...  

Introduction : In acute ischemic stroke patients, current guidelines recommend noninvasive vascular imaging to identify intracranial vessel occlusions (VO) that may benefit from endovascular treatment (EVT). However, VO can be missed in CT angiography (CTA) readings. We aim to evaluate the impact of consistently including CT perfusion (CTP) in admission stroke imaging protocols on VO diagnosis and EVT rates. Methods : We included patients with a suspected acute ischemic stroke that underwent urgent non‐contrast CT, CTA and CTP from April to October 2020. Hypoperfusion areas defined by Tmax>6s delay (RAPID software), congruent with the clinical symptoms and a vascular territory, were considered due to a VO (CTP‐VO). Cases in which mechanical thrombectomy was performed were defined as therapeutically relevant VO (EVT‐VO). For patients that received EVT, site of VO according to digital subtraction angiography was recorded. Two experienced neuroradiologists blinded to CTP but not to clinical symptoms, retrospectively evaluated NCCT and CTA to identify intracranial VO (CTA‐VO). We analyzed CTA‐VO sensitivity and specificity at detecting CTP‐VO and EVT‐VO respecitvely. We performed a logistic regression to test the association of Tmax>6s volumes with CTA‐VO identification and indication of EVT. Results : Of the 338 patients included in the analysis, 157 (46.5%) presented a CTP‐VO, (median Tmax>6s: 73 [29‐127] ml). CTA‐VO was identified in 83 (24.5%) of the cases. Overall CTA‐VO sensitivity for the detection of CTP‐VO was 50.3% and specificity was 97.8%. Higher hypoperfusion volume was associated with an increased CTA‐VO detection, with an odds ratio of 1.03 (95% confidence interval 1.02‐1.04) (figure). DSA was indicated in 107 patients; in 4 of them no EVT was attempted due to recanalization or a too distal VO in the first angiographic run. EVT was performed in 103 patients (30.5%. Tmax>6s: 102 [63‐160] ml), representing 65.6% of all CTP‐VO. Overall CTA‐VO sensitivity for the detection of EVT‐VO was 69.9%. The CTA‐VO sensitivity for detecting patients with indication of EVT according to clinical guidelines was as follows: 91.7% for ICA occlusions and 84.4% for M1‐MCA occlusions. For all other occlusion sites that received EVT, the CTA‐VO sensitivity was 36.1%. The overall specificity was 95.3%. Among patients who received EVT, CTA‐VO was not detected in 31 cases, resulting in a false negative rate of 30.1%. False negative CTA‐VO cases had lower Tmax>6s volumes (69[46‐99.5] vs 126[84‐169.5]ml, p<0.001) and lower NIHSS (13[8.5‐16] vs 17[14‐21], p<0.001). Conclusions : Systematically including CTP perfusion in the acute stroke admission imaging protocols may increase the diagnosis of VO and rate of EVT.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Bruce C Campbell ◽  
Søren Christensen ◽  
Christopher R Levi ◽  
Patricia M Desmond ◽  
Geoffrey A Donnan ◽  
...  

Background and purpose: CT-perfusion (CTP) is widely and rapidly accessible for imaging acute ischemic stroke. However, there has been limited validation of CTP parameters against the more intensively studied MRI perfusion-diffusion mismatch paradigm. We tested the correspondence of CTP with contemporaneous perfusion-diffusion MRI. Methods: Acute ischemic stroke patients <6hr after onset had CTP and perfusion-diffusion MRI within 1hr, before reperfusion therapies. Relative cerebral blood flow (relCBF) and time-to-peak of the deconvolved tissue-residue-function (Tmax) were calculated (standard singular value decomposition deconvolution). The diffusion lesion was registered to the CTP slabs and manually outlined to its maximal visual extent. CT-infarct core was defined as relCBF<31% contralateral mean as previously published using this software. The volumetric accuracy of relCBF core compared to the diffusion lesion was tested in isolation, but also when restricted to pixels with relative time-to-peak (TTP) >4sec, to reduce artifactual false positive low CBF (eg in leukoaraiosis). The MR Tmax>6sec perfusion lesion (previously validated to define penumbral tissue at risk of infarction) was automatically segmented and registered to the CTP slabs. Receiver operating characteristic (ROC) analysis determined the optimal CT-Tmax threshold to match MR-Tmax>6sec, confidence intervals generated by bootstrapping. Agreement of these CT parameters with MR perfusion-diffusion mismatch on co-registered slabs was assessed (mismatch ratio >1.2, absolute mismatch>10mL, infarct core<70mL). Results: In analysis of 98 CTP slabs (54 patients, median onset to CT 190min, median CT to MR 30min), volumetric agreement with the diffusion lesion was substantially improved by constraining relCBF<31% within the automated TTP perfusion lesion ROI (median magnitude of volume difference 9.0mL vs unconstrained 13.9mL, p<0.001). ROC analysis demonstrated the best CT-Tmax threshold to match MR-Tmax>6sec was 6.2sec (95% confidence interval 5.6-7.3sec, ie not significantly different to 6sec), sensitivity 91%, specificity 70%, AUC 0.87. Using CT-Tmax>6s “penumbra” and relCBF<31% (restricted to TTP>4s) “core”, volumetric agreement was sufficient for 90% concordance between CT and MRI-based mismatch status (kappa 0.80). Conclusions: Automated CTP mismatch classification using relCBF and Tmax is similar to perfusion-diffusion MRI. CTP may allow more widespread application of the “mismatch” paradigm in clinical practice and trials.


2012 ◽  
Vol 5 (6) ◽  
pp. 523-527 ◽  
Author(s):  
Aquilla S Turk ◽  
Jordan Asher Magarick ◽  
Don Frei ◽  
Kyle Michael Fargen ◽  
Imran Chaudry ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Andrew Bivard ◽  
Christopher Levi ◽  
Longting Lin ◽  
Xin Cheng ◽  
Richard Aviv ◽  
...  

In the present study we sought to measure the relative statistical value of various multimodal CT protocols at identifying treatment responsiveness in patients being considered for thrombolysis. We used a prospectively collected cohort of acute ischemic stroke patients being assessed for IV-alteplase, who had CT-perfusion (CTP) and CT-angiography (CTA) before a treatment decision. Linear regression and receiver operator characteristic curve analysis were performed to measure the prognostic value of models incorporating each imaging modality. One thousand five hundred and sixty-two sub-4.5 h ischemic stroke patients were included in this study. A model including clinical variables, alteplase treatment, and NCCT ASPECTS was weak (R2 0.067, P &lt; 0.001, AUC 0.605) at predicting 90 day mRS. A second model, including dynamic CTA variables (collateral grade, occlusion severity) showed better predictive accuracy for patient outcome (R2 0.381, P &lt; 0.001, AUC 0.781). A third model incorporating CTP variables showed very high predictive accuracy (R2 0.488, P &lt; 0.001, AUC 0.899). Combining all three imaging modalities variables also showed good predictive accuracy for outcome but did not improve on the CTP model (R2 0.439, P &lt; 0.001, AUC 0.825). CT perfusion predicts patient outcomes from alteplase therapy more accurately than models incorporating NCCT and/or CT angiography. This data has implications for artificial intelligence or machine learning models.


2021 ◽  
pp. neurintsurg-2021-017510
Author(s):  
Arne Potreck ◽  
Fatih Seker ◽  
Matthias Anthony Mutke ◽  
Charlotte Sabine Weyland ◽  
Christian Herweh ◽  
...  

ObjectivesAutomated CT perfusion mismatch assessment is an established treatment decision tool in acute ischemic stroke. However, the reliability of this method in patients with head motion is unclear. We therefore sought to evaluate the influence of head movement on automated CT perfusion mismatch evaluation.MethodsUsing a realistic CT brain-perfusion-phantom, 7 perfusion mismatch scenarios were simulated within the left middle cerebral artery territory. Real CT noise and artificial head movement were added. Thereafter, ischemic core, penumbra volumes and mismatch ratios were evaluated using an automated mismatch analysis software (RAPID, iSchemaView) and compared with ground truth simulated values.ResultsWhile CT scanner noise alone had only a minor impact on mismatch evaluation, a tendency towards smaller infarct core estimates (mean difference of −5.3 (−14 to 3.5) mL for subtle head movement and −7.0 (−14.7 to 0.7) mL for strong head movement), larger penumbral estimates (+9.9 (−25 to 44) mL and +35 (−14 to 85) mL, respectively) and consequently larger mismatch ratios (+0.8 (−1.5 to 3.0) for subtle head movement and +1.9 (−1.3 to 5.1) for strong head movement) were noted in dependence of patient head movement.ConclusionsMotion during CT perfusion acquisition influences automated mismatch evaluation. Potentially treatment-relevant changes in mismatch classifications in dependence of head movement were observed and occurred in favor of mechanical thrombectomy.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Raul Guisado ◽  
Reza Malek ◽  
Ursula Kelly-Tolley ◽  
Arash Padidar ◽  
Harmeet Sachdev

The safety and effectiveness of intravenous thrombolysis for acute ischemic stroke (AIS) has been established for populations older than 80 years of age . However, management of AIS in nonagenerians is not clear. Previous reports suggest that the rate of ICH after i.v. alteplase is not increased and the rate of early improvement is similar in nonagenerians compared to younger groups, but there is concern with overall mortality and functional outcomes. We report on 20 consecutive patients with AIS treated with i.v. alteplase within 3 hours of onset in two Comprehensive Stroke Centers in San Jose, CA. Methods: Patients were immediately evaluated by members of the Stroke Team of each hospital. . Patients were eligible if they had disabling neurological symptoms, no contraindications for i.v.alteplase and were independent in ADLs prior to the index event. Non-contrast CT brain scan, CT perfusion and CT angiography of head and neck were used to determine the presence of potentially salvageable brain. Results (Table): Mean age was 91 years (range 90 - 98 years). The initial NIHSS was 15.7 ± 6.8. The median NIHSS at hospital discharge was 7.4 ± 8.4 (p <0.001). The median door to needle time was 50.5 minutes (range 36 - 74 minutes). There was no hemorrhagic transformation and no in-hospital mortality. The overall mortality rate at 90 days was 30% (6 of 20 patients) and the rate of good outcome in survivors, defined as mRS ≤ 3 at 90 days was 35.7% (5 of 14 patients). Comment: Intravenous thrombolysis for ischemic stroke in nonagenerians is safe and effective, with good rates of immediate improvement. However, the l90 days mortality rate is high and the long term functional outcome is poor. This data can be useful in helping families make treatment decisions in the most elderly patients with acute ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document