scholarly journals Development of the Relationships Among Dynamic Balance Control, Inter-limb Coordination, and Torso Coordination During Gait in Children Aged 3–10 Years

2021 ◽  
Vol 15 ◽  
Author(s):  
Hiroki Mani ◽  
Saori Miyagishima ◽  
Naoki Kozuka ◽  
Takahiro Inoue ◽  
Naoya Hasegawa ◽  
...  

Knowledge about the developmental process of dynamic balance control comprised of upper arms and upper legs coordination and trunk and pelvis twist coordination is important to advance effective balance assessment for abnormal development. However, the mechanisms of these coordination and stability control during gait in childhood are unknown.This study examined the development of dynamic postural stability, upper arm and upper leg coordination, and trunk and pelvic twist coordination during gait, and investigated the potential mechanisms integrating the central nervous system with inter-limb coordination and trunk and pelvic twist coordination to control extrapolated center of the body mass (XCOM). This study included 77 healthy children aged 3–10 years and 15 young adults. The child cohort was divided into four groups by age: 3–4, 5–6, 7–8, and 9–10 years. Participants walked barefoot at a self-selected walking speed along an 8 m walkway. A three-dimensional motion capture system was used for calculating the XCOM, the spatial margin of stability (MoS), and phase coupling movements of the upper arms, upper legs, trunk, and pelvic segments. MoS in the mediolateral axis was significantly higher in the young adults than in all children groups. Contralateral coordination (ipsilateral upper arm and contralateral upper leg combination) gradually changed to an in-phase pattern with increasing age until age 9 years. Significant correlations of XCOMML with contralateral coordination and with trunk and pelvic twist coordination (trunk/pelvis coordination) were found. Significant correlations between contralateral coordination and trunk/pelvis coordination were observed only in the 5–6 years and at 7–8 years groups.Dynamic postural stability during gait was not fully mature at age 10. XCOM control is associated with the development of contralateral coordination and trunk and pelvic twist coordination. The closer to in-phase pattern of contralateral upper limb coordination improved the XCOM fluctuations. Conversely, the out-of-phase pattern (about 90 degrees) of the trunk/pelvis coordination increased theXCOM fluctuation. Additionally, a different control strategy was used among children 3–8 years of age and individuals over 9 years of age, which suggests that 3–4-year-old children showed a disorderly coordination strategy between limb swing and torso movement, and in children 5–8 years of age, limb swing depended on trunk/pelvis coordination.

Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1358
Author(s):  
Dongchul Moon ◽  
Juhyeon Jung

Effective balance rehabilitation is essential to address flat foot (pes planus) which is closely associated with reduced postural stability. Although sensorimotor training (SMT) and short-foot exercise (SFE) have been effective for improving postural stability, the combined effects of SMT with SFE have not been evaluated in previous studies. The aim of this study was to compare the lone versus combined effects of SMT with SFE on postural stability among participants with flat foot. This was a single-blinded, randomized controlled trial. A total of 32 flat-footed participants were included in the study (14 males and 18 females) and assigned to the SMT combined with SFE group and SMT alone group. All participants underwent 18 sessions of the SMT program three times a week for six weeks. Static balance, dynamic balance, and the Hmax/Mmax ratio were compared before and after the interventions. Static and dynamic balance significantly increased in the SMT combined with SFE group compared with the SMT alone group. However, the Hmax/Mmax ratio was not significantly different between the two groups. Therefore, this study confirms that the combination of SMT and SFE is superior to SMT alone to improve postural balance control in flat-footed patients in clinical settings.


2005 ◽  
Vol 94 (1) ◽  
pp. 754-763 ◽  
Author(s):  
Yuri P. Ivanenko ◽  
Nadia Dominici ◽  
Germana Cappellini ◽  
Francesco Lacquaniti

When a toddler starts to walk without support, gait kinematics and electromyographic (EMG) activity differ from those of older children and the body displays considerable oscillations due to poor equilibrium. Postural instability clearly affects motor patterns in adults, but does instability explain why toddlers walk with a different gait? Here we addressed this question by comparing kinematics and EMGs in toddlers performing their first independent steps with or without hand or trunk support. Hand support significantly improved postural stability and some general gait parameters, reducing percent of falls, step width, lateral hip deviations and trunk oscillations. However, the kinematic and EMG patterns were unaffected by increased postural stability. In particular, the co-variance of the angular motion of the lower limb segments, the pattern of bilateral coordination of the vertical movement of the two hip joints, high variability of the foot path, the elliptic or single peak trajectory of the foot in the swing phase, and characteristic EMG bursts at foot contact remained idiosyncratic of toddler locomotion. Instead the toddler pattern shared fundamental features with adult stepping in place, suggesting that toddlers implement a mixed locomotor strategy, combining forward progression with elements of stepping in place. Furthermore, gait kinematics remained basically unchanged until the occurrence of the first unsupported steps and rapidly matured thereafter. We conclude that idiosyncratic features in newly walking toddlers do not simply result from undeveloped balance control but may represent an innate kinematic template of stepping.


2020 ◽  
Vol 74 (4) ◽  
pp. 18-24
Author(s):  
Krystyna Orendorz-Frączkowska ◽  
Marzena Kubacka

<b>Introduction</b>: The ability to Reach quickly to changing external stimuli, to move the body quickly and precisely in any direction and to maintain the centre of gravity above the support base, all contribute to maintaining balance in dynamic conditions. The Limits of Stability Test (LOS) provides information on the state of dynamic equilibrium in a standing position.<br> <b>Aim</b> : Assessment of dynamic postural control in developmental age.<br> <b>Material</b> : 127 healthy children (65 girls and 62 boys) aged 6 – 17years. <br> <b>Methods</b>: All children underwent LOS test (posturograph NeuroCom) with registration of reaction time (RT), movement velocity (MVL), directional control (DCL) , maximum excursion (MXE) and endpoint excursion (EPE).<br> <b>Results</b>: At the age of 6-7 years, not fully developed jumping strategy and visual feedback mechanism in the control of movement were observed. All tested parameters were significantly worse in children aged 6 – 9 years. After this period, a significant improvement in TR and MVL was observed, with no significant changes in subsequent age groups while significant improvement in MXE up to 12 , EPE and DCL up to 13 years of age was noted. No significant gender differences were fund in the LOS test parameters. <br> <b>Conclusions</b>: 1 The LOS test showed significantly lower dynamic balance development in children aged 6 – 7 years. 2 The study showed a significant improvement in all parameters of the LOS test up to 13 years of age, which supports the termination of the function at that time.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4193 ◽  
Author(s):  
Cunguang Lou ◽  
Chenyao Pang ◽  
Congrui Jing ◽  
Shuo Wang ◽  
Xufeng He ◽  
...  

The center of plantar pressure (COP) reflects the dynamic balance of subjects to a certain extent. In this study, wearable pressure insoles are designed, body pose measure is detected by the Kinect sensor, and a balance evaluation system is formulated. With the designed games for the interactive actions, the Kinect sensor reads the skeletal poses to judge whether the desired action is performed, and the pressure insoles simultaneously collect the plantar pressure data. The COP displacement and its speed are calculated to determine the body sway and the ability of balance control. Significant differences in the dispersion of the COP distribution of the 12 subjects have been obtained, indicating different balancing abilities of the examined subjects. A novel assessment process is also proposed in the paper, in which a correlation analysis is made between the de facto sit-to-stand (STS) test and the proposed method; the Pearson and Spearman correlations are also conducted, which reveal a significant positive correlation. Finally, four undergraduate volunteers with a right leg sports injury participate in the experiments. The experimental results show that the normal side and abnormal side have significantly different characters, suggesting that our method is effective and robust for balance measurements.


2012 ◽  
Vol 107 (8) ◽  
pp. 2072-2082 ◽  
Author(s):  
Pavel Musienko ◽  
Gregoire Courtine ◽  
Jameson E. Tibbs ◽  
Vyacheslav Kilimnik ◽  
Alexandr Savochin ◽  
...  

Postmammillary decerebrated cats can generate stepping on a moving treadmill belt when the brain stem or spinal cord is stimulated tonically and the hindquarters are supported both vertically and laterally. While adequate propulsion seems to be generated by the hindlimbs under these conditions, the ability to sustain equilibrium during locomotion has not been examined extensively. We found that tonic epidural spinal cord stimulation (5 Hz at L5) of decerebrated cats initiated and sustained unrestrained weight-bearing hindlimb stepping for extended periods. Detailed analyses of the relationships among hindlimb muscle EMG activity and trunk and limb kinematics and kinetics indicated that the motor circuitries in decerebrated cats actively maintain equilibrium during walking, similar to that observed in intact animals. Because of the suppression of vestibular, visual, and head-neck-trunk sensory input, balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters. In addition to dynamic balance control during unperturbed locomotion, sustained stepping could be reestablished rapidly after a collapse or stumble when the hindquarters switched from a restrained to an unrestrained condition. Deflecting the body by pulling the tail laterally induced adaptive modulations in the EMG activity, step cycle features, and left-right ground reaction forces that were sufficient to maintain lateral stability. Thus the brain stem-spinal cord circuitry of decerebrated cats in response to tonic spinal cord stimulation can control dynamic balance during locomotion using only somatosensory input.


2015 ◽  
Vol 23 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Mark G.L. Sayers ◽  
Amanda L. Tweddle ◽  
Jessika Morris

This project assessed dynamic balance and stability in aged lawn bowlers during the delivery stride. Participants were divided into two groups: aged 65 years or less (n = 14) and aged over 65 years (n = 16). Standard balance-based center of pressure (CoP) and ground reaction force variables were recorded and a Dynamic Postural Stability Index (DPSI) was used for calculating during ten deliveries. None of the balance variables correlated significantly with age although years of bowling experience correlated with DPSI scores (r = -.42, P = .019). The over 65 group had significantly greater variance in the mediolateral CoP movements, with no other significant differences in balance or postural stability variables between groups. Analysis of covariance indicated that the DPSI data were influenced significantly by bowling experience regardless of age group. It was concluded that in older aged lawn bowlers, playing experience rather than age is a key determinant of balance control during the lawn bowls delivery action.


2019 ◽  
Vol 6 (2) ◽  
pp. 342-349
Author(s):  
Turhan Kahraman ◽  
◽  
Mahmut Besli ◽  
Bayram Unver ◽  
Yesim Salik Sengul ◽  
...  

2007 ◽  
Vol 181 (2) ◽  
pp. 289-295 ◽  
Author(s):  
Hanne Austad ◽  
Audrey L. H. van der Meer

2005 ◽  
Vol 94 (1) ◽  
pp. 754-763 ◽  
Author(s):  
Yuri P. Ivanenko ◽  
Nadia Dominici ◽  
Germana Cappellini ◽  
Francesco Lacquaniti

When a toddler starts to walk without support, gait kinematics and electromyographic (EMG) activity differ from those of older children and the body displays considerable oscillations due to poor equilibrium. Postural instability clearly affects motor patterns in adults, but does instability explain why toddlers walk with a different gait? Here we addressed this question by comparing kinematics and EMGs in toddlers performing their first independent steps with or without hand or trunk support. Hand support significantly improved postural stability and some general gait parameters, reducing percent of falls, step width, lateral hip deviations and trunk oscillations. However, the kinematic and EMG patterns were unaffected by increased postural stability. In particular, the co-variance of the angular motion of the lower limb segments, the pattern of bilateral coordination of the vertical movement of the two hip joints, high variability of the foot path, the elliptic or single peak trajectory of the foot in the swing phase, and characteristic EMG bursts at foot contact remained idiosyncratic of toddler locomotion. Instead the toddler pattern shared fundamental features with adult stepping in place, suggesting that toddlers implement a mixed locomotor strategy, combining forward progression with elements of stepping in place. Furthermore, gait kinematics remained basically unchanged until the occurrence of the first unsupported steps and rapidly matured thereafter. We conclude that idiosyncratic features in newly walking toddlers do not simply result from undeveloped balance control but may represent an innate kinematic template of stepping.


Author(s):  
Carla Gonçalves ◽  
Pedro Bezerra ◽  
Filipe Manuel Clemente ◽  
Carolina Vila-Chã ◽  
Cesar Leão ◽  
...  

The aims of this study were to analyse the effects of unstable and stable bodyweight neuromuscular training on dynamic balance control and to analyse the between-group differences after the training period. Seventy-seven physically active young adults (48 males, 29 females, 19.1 ± 1.1 years, 170.2 ± 9.2 cm, 64.1 ± 10.7 kg) were distributed into an unstable training group (UTG), a stable training group (STG), and a control group (CG). Training was conducted three times a week for nine weeks. Pre-intervention and post-intervention measures included dynamic balance control using a Y Balance Test (YBT), anterior (A), posteromedial (PM), and posterolateral (PL) reach direction. A mixed ANOVA was executed to test the within-subjects factor and the between-subjects factor. Statistically significant differences were found for all YBT measures within groups (p = 0.01) and between groups (p = 0.01). After the intervention, UTG and STG presented meaningfully improved results in all YBT measures (A: 7%, p = 0.01; 4%, p = 0.02, PM: 8%, p = 0.01; 5%, p = 0.01, PL: 8%, p = 0.01; 4%, p = 0.04, respectively). No statistical changes were found for any of the measures in the CG. After the intervention, significant differences were observed between the UTG and CG for the YBTA and PM (p = 0.03; p = 0.01). The results suggest that neuromuscular training using an unstable surface had similar effects on dynamic balance control as training using a stable surface. When compared to CG, UTG showed better performance in YBTA and PM.


Sign in / Sign up

Export Citation Format

Share Document