scholarly journals Cortical Activation During Finger Tapping Task Performance in Parkinson's Disease Is Influenced by Priming Conditions: An ALE Meta-Analysis

2021 ◽  
Vol 15 ◽  
Author(s):  
Jingjing Li ◽  
Zheng Liu ◽  
Zhongquan Du ◽  
Ningning Zhu ◽  
Xueqing Qiu ◽  
...  

The finger tapping task (FTT) is commonly used in the evaluation of dyskinesia among patients with Parkinson's disease (PD). Past research has indicated that cortical activation during FTT is different between self-priming and cue-priming conditions. To evaluate how priming conditions affect the distribution of brain activation and the reorganization of brain function, and to investigate the differences in brain activation areas during FTT between PD patients and healthy control (HC) participants, we conducted an activation likelihood estimation (ALE) meta-analysis on the existing literature. Analyses were based on data from 15 independent samples that included 181 participants with PD and 164 HC participants. We found that there was significantly more activation in the middle frontal gyrus, precentral gyrus, post-central gyrus, superior parietal lobe, inferior parietal lobule, cerebellum, and basal ganglia during FTT in PD patients than in HCs. In self-priming conditions, PD patients had less activation in the parietal lobe and insular cortex but more activation in the cerebellum than the HCs. In cue-priming conditions, the PD patients showed less activation in the cerebellum and frontal-parietal areas and more activation in the superior frontal gyrus and superior temporal gyrus than the HCs. Our study illustrates that cue-priming manipulations affect the distribution of activity in brain regions involved in motor control and motor performance in PD patients. In cue-priming conditions, brain activity in regions associated with perceptual processing and inhibitory control was enhanced, while sensory motor areas associated with attention and motor control were impaired.

2013 ◽  
Vol 35 (7) ◽  
pp. 3227-3237 ◽  
Author(s):  
Damian M. Herz ◽  
Simon B. Eickhoff ◽  
Annemette Løkkegaard ◽  
Hartwig R. Siebner

2021 ◽  
Vol 13 ◽  
Author(s):  
Junli Li ◽  
Haiyan Liao ◽  
Tianyu Wang ◽  
Yuheng Zi ◽  
Lin Zhang ◽  
...  

Objectives: This study aimed to investigate alterations in regional homogeneity (ReHo) in early Parkinson’s disease (PD) at different Hoehn and Yahr (HY) stages and to demonstrate the relationships between altered brain regions and clinical scale scores.Methods: We recruited 75 PD patients, including 43 with mild PD (PD-mild; HY stage: 1.0–1.5) and 32 with moderate PD (PD-moderate; HY stage: 2.0–2.5). We also recruited 37 age- and sex-matched healthy subjects as healthy controls (HC). All subjects underwent neuropsychological assessments and a 3.0 Tesla magnetic resonance scanning. Regional homogeneity of blood oxygen level-dependent (BOLD) signals was used to characterize regional cerebral function. Correlative relationships between mean ReHo values and clinical data were then explored.Results: Compared to the HC group, the PD-mild group exhibited increased ReHo values in the right cerebellum, while the PD-moderate group exhibited increased ReHo values in the bilateral cerebellum, and decreased ReHo values in the right superior temporal gyrus, the right Rolandic operculum, the right postcentral gyrus, and the right precentral gyrus. Reho value of right Pre/Postcentral was negatively correlated with HY stage. Compared to the PD-moderate group, the PD-mild group showed reduced ReHo values in the right superior orbital gyrus and the right rectus, in which the ReHo value was negatively correlated with cognition.Conclusion: The right superior orbital gyrus and right rectus may serve as a differential indicator for mild and moderate PD. Subjects with moderate PD had a greater scope for ReHo alterations in the cortex and compensation in the cerebellum than those with mild PD. PD at HY stages of 2.0–2.5 may already be classified as Braak stages 5 and 6 in terms of pathology. Our study revealed the different patterns of brain function in a resting state in PD at different HY stages and may help to elucidate the neural function and early diagnosis of patients with PD.


2020 ◽  
Author(s):  
Zhang Ran ◽  
Gong Ping ◽  
Ge Haitao

AbstractObjectiveTo study the abnormal brain regions of patients with Parkinson’s disease (PD) using multimodality MRI to provide complementary information for early detection for PD.Methods27 patients with early PD and 25 normal ageing volunteers were included in the study. Multimodality MRI data were acquired and processed to extract neuroimaging features to test the structural and functional changes using a two-sample t-test.ResultsThe changes of brain regions were disagreed for different modality MRI data between PD and normal ageing individuals. Nevertheless,the postcentral gyrus, precentral gyrus, lingual gyrus and paracentral lobule were significantly different for all three modalities.ConclusionMultimodality MRI data can reflect the structural and functional changes of PD, and reveal the hidden information which is of great significance to assist early detection for PD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bei Luo ◽  
Yue Lu ◽  
Chang Qiu ◽  
Wenwen Dong ◽  
Chen Xue ◽  
...  

BackgroundTransient improvement in motor symptoms are immediately observed in patients with Parkinson’s disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood.PurposeWe utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS.MethodOverall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients.ResultRelative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN).ConclusionThe subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.


2013 ◽  
Vol 25 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Benny Liberg ◽  
Mats Adler ◽  
Tomas Jonsson ◽  
Mikael Landén ◽  
Christoffer Rahm ◽  
...  

ObjectiveMotor retardation is a characteristic feature of bipolar depression, and is also a core feature of Parkinson's disease. Within the framework of the functional deafferentiation theory in Parkinson's disease, we hypothesised that motor retardation in bipolar depression is mediated by disrupted subcortical activation, leading to decreased activation of cortical motor areas during finger tapping.MethodsWe used functional magnetic resonance imaging to investigate neural activity during self-paced finger tapping to elucidate whether brain regions that mediate preparation, control and execution of movement are activated differently in subjects with bipolar depression (n = 9) compared to healthy controls (n = 12).ResultsAn uncorrected whole-brain analysis revealed significant group differences in dorsolateral and ventromedial prefrontal cortex. Corrected analyses showed non-significant differences in patients compared to controls: decreased and less widespread activation of the left putamen and left pallidum; increased activity in the left thalamus and supplementary motor area; decreased activation in the left lateral pre- and primary motor cortices; absence of activation in the pre-supplementary motor area; activation of the bilateral rostral cingulate motor area.ConclusionBoth movement preparation and execution may be affected in motor retardation, and the activity in the whole left-side motor circuit is altered during self-initiated motor performance in bipolar depression.


2019 ◽  
Author(s):  
Zachary Hawes ◽  
H Moriah Sokolowski ◽  
Chuka Bosah Ononye ◽  
Daniel Ansari

Where and under what conditions do spatial and numerical skills converge and diverge in the brain? To address this question, we conducted a meta-analysis of brain regions associated with basic symbolic number processing, arithmetic, and mental rotation. We used Activation Likelihood Estimation (ALE) to construct quantitative meta-analytic maps synthesizing results from 86 neuroimaging papers (~ 30 studies/cognitive process). All three cognitive processes were found to activate bilateral parietal regions in and around the intraparietal sulcus (IPS); a finding consistent with shared processing accounts. Numerical and arithmetic processing were associated with overlap in the left angular gyrus, whereas mental rotation and arithmetic both showed activity in the middle frontal gyri. These patterns suggest regions of cortex potentially more specialized for symbolic number representation and domain-general mental manipulation, respectively. Additionally, arithmetic was associated with unique activity throughout the fronto-parietal network and mental rotation was associated with unique activity in the right superior parietal lobe. Overall, these results provide new insights into the intersection of numerical and spatial thought in the human brain.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


Author(s):  
Zahra Nodehi ◽  
Hajar Mehdizadeh ◽  
Akram Azad ◽  
Maryam Mehdizadeh ◽  
Elham Reyhanian ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 674
Author(s):  
Han-Lin Chiang ◽  
Yih-Ru Wu ◽  
Yi-Chun Chen ◽  
Hon-Chung Fung ◽  
Chiung-Mei Chen

Parkinson’s disease (PD) is a neurodegenerative disease with the pathological hallmark of Lewy bodies and Lewy neurites composed of α-synuclein. The SNP rs591323 is one of the risk loci located near the FGF20 gene that has been implicated in PD. The variation of FGF20 in the 3′ untranslated region was shown to increase α-synuclein expression. We examined the association of rs591323 with the risk of PD in a Taiwanese population and conducted a meta-analysis, including our study and two other studies from China, to further confirm the role of this SNP in Taiwanese/Chinese populations. A total of 586 patients with PD and 586 health controls (HCs) were included in our study. We found that the minor allele (A) and the AA + GA genotype under the dominant model are significantly less frequent in PD than in controls. The meta-analysis consisted of 1950 patients with PD and 2073 healthy controls from three studies. There was significant association between rs591323 and the risk of PD in the additive (Z = −3.96; p < 0.0001) and the dominant models (Z = −4.01; p < 0.0001). Our study results and the meta-analysis support the possible protective role of the rs591323 A allele in PD in Taiwanese/Chinese populations.


Sign in / Sign up

Export Citation Format

Share Document