scholarly journals Changes in Degree Centrality of Network Nodes in Different Frequency Bands in Parkinson’s Disease With Depression and Without Depression

2021 ◽  
Vol 15 ◽  
Author(s):  
Haiyan Liao ◽  
Jinyao Yi ◽  
Sainan Cai ◽  
Qin Shen ◽  
Qinru Liu ◽  
...  

BackgroundDepression induces an early onset of Parkinson’s disease (PD), aggravates dyskinesia and cognitive impairment, and accelerates disease progression. However, it is very difficult to identify and diagnose PD with depression (PDD) in the early clinical stage. Few studies have suggested that the changes in neural networks are associated with PDD, while degree centrality (DC) has been documented to be effective in detecting brain network changes.ObjectivesThe objectives of this study are to explore DC changes between patients with PDD and without depression (PDND) and to find the key brain hubs involved with depression in PD patients.MethodsOne hundred and four PD patients and 54 healthy controls (HCs) underwent brain resting-state functional magnetic resonance imaging. The Data Processing and Analysis of Brain Imaging and Resting-State Functional Magnetic Resonance Data Analysis Toolkit were used for processing and statistical analysis. The DC value of each frequency band was calculated. One-way analysis of variance and a two-sample t-test for post hoc comparison were used to compare the differences of the DC values in different frequency bands among PDD, PDND, and healthy control group. Gaussian random field was used for multiple comparison correction. Pearson correlation analysis was performed between each individual’s DC map and clinical indicators.ResultsThe DC value of different brain regions changed in PDD and PDND in different frequency bands. The prefrontal lobe, limbic system, and basal ganglia were the main brain regions involved. PDD patients showed a wider range and more abnormal brain areas in the slow-4 frequency band (0.027–0.073 Hz) compared to the HCs. PDD showed a decreased DC value in the medial frontal gyrus, bilateral cuneus gyrus, right lingual gyrus, bilateral supplementary motor area (SMA), bilateral superior frontal gyrus, and left paracentral lobule, but an increased DC value in the bilateral brainstem, midbrain, bilateral parahippocampal gyrus, cerebellum, left superior temporal gyrus, bilateral insula, left fusiform gyrus, and left caudate nucleus in the traditional frequency band (0.01–0.08 Hz) compared to PDND patients. PDND patients displayed more abnormal functions in the basal ganglia in the slow-4 frequency band.ConclusionThe DC changes in PDD and PDND are frequency dependent and frequency specific. The medial frontal gyrus, SMA, and limbic system may be the key hubs for depression in PD.

2020 ◽  
Vol 63 (9) ◽  
pp. 3051-3067
Author(s):  
Amy E. Ramage ◽  
Semra Aytur ◽  
Kirrie J. Ballard

Purpose Brain imaging has provided puzzle pieces in the understanding of language. In neurologically healthy populations, the structure of certain brain regions is associated with particular language functions (e.g., semantics, phonology). In studies on focal brain damage, certain brain regions or connections are considered sufficient or necessary for a given language function. However, few of these account for the effects of lesioned tissue on the “functional” dynamics of the brain for language processing. Here, functional connectivity (FC) among semantic–phonological regions of interest (ROIs) is assessed to fill a gap in our understanding about the neural substrates of impaired language and whether connectivity strength can predict language performance on a clinical tool in individuals with aphasia. Method Clinical assessment of language, using the Western Aphasia Battery–Revised, and resting-state functional magnetic resonance imaging data were obtained for 30 individuals with chronic aphasia secondary to left-hemisphere stroke and 18 age-matched healthy controls. FC between bilateral ROIs was contrasted by group and used to predict Western Aphasia Battery–Revised scores. Results Network coherence was observed in healthy controls and participants with stroke. The left–right premotor cortex connection was stronger in healthy controls, as reported by New et al. (2015) in the same data set. FC of (a) connections between temporal regions, in the left hemisphere and bilaterally, predicted lexical–semantic processing for auditory comprehension and (b) ipsilateral connections between temporal and frontal regions in both hemispheres predicted access to semantic–phonological representations and processing for verbal production. Conclusions Network connectivity of brain regions associated with semantic–phonological processing is predictive of language performance in poststroke aphasia. The most predictive connections involved right-hemisphere ROIs—particularly those for which structural adaptions are known to associate with recovered word retrieval performance. Predictions may be made, based on these findings, about which connections have potential as targets for neuroplastic functional changes with intervention in aphasia. Supplemental Material https://doi.org/10.23641/asha.12735785


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
P. Reyes ◽  
M. P. Ortega-Merchan ◽  
A. Rueda ◽  
F. Uriza ◽  
Hernando Santamaria-García ◽  
...  

Frontotemporal dementia (FTD) affects behavior, language, and personality. This study aims to explore functional connectivity changes in three FTD variants: behavioral (bvFTD), semantic (svPPA), and nonfluent variant (nfvPPA). Seventy-six patients diagnosed with FTD by international criteria and thirty-two controls were investigated. Functional connectivity from resting functional magnetic resonance imaging (fMRI) was estimated for the whole brain. Two types of analysis were done: network basic statistic and topological measures by graph theory. Several hubs in the limbic system and basal ganglia were compromised in the behavioral variant apart from frontal networks. Nonfluent variants showed a major disconnection with respect to the behavioral variant in operculum and parietal inferior. The global efficiency had lower coefficients in nonfluent variants than behavioral variants and controls. Our results support an extensive disconnection among frontal, limbic, basal ganglia, and parietal hubs.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Juan Shen ◽  
Chao Xu

This paper uses resting-state functional magnetic resonance imaging to observe the changes in local consistency of brain activity in patients with Parkinson’s disease (PD). Both healthy volunteers and Parkinson’s disease patients were scanned for resting brain functional imaging, and the collected raw data were processed using resting functional magnetic resonance data processing toolkit software. This study adopted the use of Regional Homogeneity (ReHo). The postprocessing method of RS-fMRI is to study the spontaneous brain activity changes of patients with Parkinson’s disease and cognitive impairment and to explore the changes in the function of their brain regions in the hope of providing help for the treatment of Parkinson’s disease cognitive impairment. The results showed that, compared with the normal control group, the brain regions with increased ReHo values in the PD group were the right central anterior gyrus, the right lingual gyrus, the left middle occipital gyrus, and the bilateral anterior cuneiform lobes. The results show that PD patients have abnormal brain nerve activities in the resting state, and these abnormal brain nerve activities may be related to PD cognitive and behavioral dysfunction.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Cui-Ping Xu ◽  
Shou-Wen Zhang ◽  
Tie Fang ◽  
Ma Manxiu ◽  
Qian Chencan ◽  
...  

Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy.


2021 ◽  
Author(s):  
Xiangchuan Chen ◽  
Diana J Beltran ◽  
Valeriya D Tsygankova ◽  
Bobbi J Woolwine ◽  
Trusharth Patel ◽  
...  

Inflammation is associated with depressive symptoms including anhedonia in patients with major depression. Nevertheless, the mechanisms by which peripheral inflammatory signals are communicated to the brain to influence central nervous system (CNS) function has yet to be fully elucidated. Based on laboratory animal studies, molecules of the kynurenine pathway (KP), which is activated by inflammation, can readily enter the brain, and generate metabolites that can alter neuronal and glial function, leading to behavioral changes. We therefore examined the relationship between KP metabolites in the plasma and cerebrospinal fluid (CSF) and brain chemistry and neural network function using multi-modal neuroimaging in 49 unmedicated, depressed subjects. CNS measures included 1) biochemical markers of glial dysfunction including glutamate (Glu) and myo-inositol (mI) in the left basal ganglia (LBG) using magnetic resonance spectroscopy (MRS); 2) local activity coherence (regional homogeneity, ReHo) and functional connectivity using resting-state functional magnetic resonance imaging; and 3) anhedonia from the Inventory for Depressive Symptoms-Self Reported. Plasma quinolinic acid (QA) was associated with increases and kynurenic acid (KYNA) and KYNA/QA with decreases in LBG Glu. Plasma kynurenine/tryptophan and CSF 3-hydroxy kynurenine (3HK) were associated with increases in LBG mI. Plasma and CSF KP were associated with decreases in ReHo in LBG and dorsomedial prefrontal cortex (DMPFC), and impaired functional connectivity between these two brain regions. DMPFC-BG connectivity mediated the effect of plasma and CSF KP metabolites on anhedonia. These findings highlight the contribution of KP metabolites to glial and neuronal dysfunction and ultimately behavior in depression.


Sign in / Sign up

Export Citation Format

Share Document