scholarly journals Common Brain Substrates Underlying Auditory Speech Priming and Perceived Spatial Separation

2021 ◽  
Vol 15 ◽  
Author(s):  
Junxian Wang ◽  
Jing Chen ◽  
Xiaodong Yang ◽  
Lei Liu ◽  
Chao Wu ◽  
...  

Under a “cocktail party” environment, listeners can utilize prior knowledge of the content and voice of the target speech [i.e., auditory speech priming (ASP)] and perceived spatial separation to improve recognition of the target speech among masking speech. Previous studies suggest that these two unmasking cues are not processed independently. However, it is unclear whether the unmasking effects of these two cues are supported by common neural bases. In the current study, we aimed to first confirm that ASP and perceived spatial separation contribute to the improvement of speech recognition interactively in a multitalker condition and further investigate whether there exist intersectant brain substrates underlying both unmasking effects, by introducing these two unmasking cues in a unified paradigm and using functional magnetic resonance imaging. The results showed that neural activations by the unmasking effects of ASP and perceived separation partly overlapped in brain areas: the left pars triangularis (TriIFG) and orbitalis of the inferior frontal gyrus, left inferior parietal lobule, left supramarginal gyrus, and bilateral putamen, all of which are involved in the sensorimotor integration and the speech production. The activations of the left TriIFG were correlated with behavioral improvements caused by ASP and perceived separation. Meanwhile, ASP and perceived separation also enhanced the functional connectivity between the left IFG and brain areas related to the suppression of distractive speech signals: the anterior cingulate cortex and the left middle frontal gyrus, respectively. Therefore, these findings suggest that the motor representation of speech is important for both the unmasking effects of ASP and perceived separation and highlight the critical role of the left IFG in these unmasking effects in “cocktail party” environments.

2015 ◽  
Vol 46 (3) ◽  
pp. 477-491 ◽  
Author(s):  
Y. Zheng ◽  
C. Wu ◽  
J. Li ◽  
H. Wu ◽  
S. She ◽  
...  

BackgroundPeople with schizophrenia recognize speech poorly under multiple-people-talking (informational masking) conditions. In reverberant environments, direct-wave signals from a speech source are perceptually integrated with the source reflections (the precedence effect), forming perceived spatial separation (PSS) between different sources and consequently improving target-speech recognition against informational masking. However, the brain substrates underlying the schizophrenia-related vulnerability to informational masking and whether schizophrenia affects the unmasking effect of PSS are largely unknown.MethodUsing psychoacoustic testing and functional magnetic resonance imaging, respectively, the speech recognition under either the PSS or perceived spatial co-location (PSC) condition and the underlying brain substrates were examined in 20 patients with schizophrenia and 16 healthy controls.ResultsSpeech recognition was worse in patients than controls. Under the PSS (but not PSC) condition, speech recognition was correlated with activation of the superior parietal lobule (SPL), and target speech-induced activation of the SPL, precuneus, middle cingulate cortex and caudate significantly declined in patients. Moreover, the separation (PSS)-against-co-location (PSC) contrast revealed (1) activation of the SPL, precuneus and anterior cingulate cortex in controls, (2) suppression of the SPL and precuneus in patients, (3) activation of the pars triangularis of the inferior frontal gyrus and middle frontal gyrus in both controls and patients, (4) activation of the medial superior frontal gyrus in patients, and (5) impaired functional connectivity of the SPL in patients.ConclusionsIntroducing the PSS listening condition efficiently reveals both the brain substrates underlying schizophrenia-related speech-recognition deficits against informational masking and the schizophrenia-related neural compensatory strategy for impaired SPL functions.


Author(s):  
Sebastian P.H. Speer ◽  
Ale Smidts ◽  
Maarten A.S. Boksem

AbstractEvery day, we are faced with the conflict between the temptation to cheat for financial gains and maintaining a positive image of ourselves as being a ‘good person’. While it has been proposed that cognitive control is needed to mediate this conflict between reward and our moral self-image, the exact role of cognitive control in (dis)honesty remains elusive. Here, we identify this role, by investigating the neural mechanism underlying cheating. We developed a novel task which allows for inconspicuously measuring spontaneous cheating on a trial-by-trial basis in the MRI scanner. We found that activity in the Nucleus Accumbens promotes cheating, particularly for individuals who cheat a lot, while a network consisting of Posterior Cingulate Cortex, Temporoparietal Junction and Medial Prefrontal Cortex promotes honesty, particularly in individuals who are generally honest. Finally, activity in areas associated with Cognitive Control (Anterior Cingulate Cortex and Inferior Frontal Gyrus) helped dishonest participants to be honest, whereas it promoted cheating for honest participants. Thus, our results suggest that cognitive control is not needed to be honest or dishonest per se, but that it depends on an individual’s moral default.


2004 ◽  
Vol 6 (2) ◽  
pp. 143-155

There is increasing evidence from a variety of sources that severe mood disorders are associated with regional reductions in brain volume, as well as reductions in the number, size, and density of glia and neurons in discrete brain areas. Although the precise pathophysiology underlying these morphometric changes remains to be fully elucidated, the data suggest that severe mood disorders are associated with impairments of structural plasticity and cellular resilience. In this context, it is noteworthy that a growing body of data suggests that the glutamaiergic system (which is known to play a major role in neuronal plasticity and cellular resilience) may be involved in the pathophysiology and treatment of mood disorders. Glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) GluR1 receptor trafficking plays a critical role in regulating various forms of neural plasticity. It is thus noteworthy that recent studies have shown that structurally dissimilar mood stabilizers lithium and valproate regulate GluR1 receptor subunit trafficking and localization at synapses. These studies suggest that regulation of glutamatergically mediated synaptic plasticity may play a role in the treatment of mood disorders, and raises the possibility that agents more directly affecting synaptic GluR1 represent novel therapies for these devastating illnesses.


2020 ◽  
Vol 117 (32) ◽  
pp. 19080-19091 ◽  
Author(s):  
Sebastian P. H. Speer ◽  
Ale Smidts ◽  
Maarten A. S. Boksem

Every day, we are faced with the conflict between the temptation to cheat for financial gains and maintaining a positive image of ourselves as being a “good person.” While it has been proposed that cognitive control is needed to mediate this conflict between reward and our moral self-image, the exact role of cognitive control in (dis)honesty remains elusive. Here we identify this role, by investigating the neural mechanism underlying cheating. We developed a task which allows for inconspicuously measuring spontaneous cheating on a trial-by-trial basis in the MRI scanner. We found that activity in the nucleus accumbens promotes cheating, particularly for individuals who cheat a lot, while a network consisting of posterior cingulate cortex, temporoparietal junction, and medial prefrontal cortex promotes honesty, particularly in individuals who are generally honest. Finally, activity in areas associated with cognitive control (anterior cingulate cortex and inferior frontal gyrus) helped dishonest participants to be honest, whereas it enabled cheating for honest participants. Thus, our results suggest that cognitive control is not needed to be honest or dishonest per se but that it depends on an individual’s moral default.


2002 ◽  
Vol 8 (6) ◽  
pp. 735-742 ◽  
Author(s):  
LARISSA A. MEAD ◽  
ANDREW R. MAYER ◽  
JULIE A. BOBHOLZ ◽  
SCOTT J. WOODLEY ◽  
JOSEPH M. CUNNINGHAM ◽  
...  

Previous neuroimaging studies of the Stroop task have postulated that the anterior cingulate cortex (ACC) plays a critical role in resolution of the Stroop interference condition. However, activation of the ACC is not invariably seen and appears to depend on a variety of methodological factors, including the degree of response conflict and response expectancies. The present functional MRI study was designed to identify those brain areas critically involved in the interference condition. Healthy subjects underwent a blocked-trial design fMRI experiment while responding to 1 of 3 stimulus conditions: (1) incongruent color words, (2) congruent color words, and (3) color-neutral words. Subjects responded to the printed color of the word via a manual response. Compared to the congruent and neutral conditions, the incongruent condition produced significant activation within the left inferior precentral sulcus (IpreCS) located on the border between the inferior frontal gyrus, pars opercularis (BA 44) and the ventral premotor region (BA 6). Significant deactivations in the rostral component of the ACC and the posterior cingulate gyrus were also observed. Selective activation of the left IpreCS is compatible with findings from previous neuroimaging, lesion, electrophysiological, and behavioral studies and is presumably related to the mediation of competing articulatory demands during the interference condition. (JINS, 2002, 8, 735–742.)


2020 ◽  
Author(s):  
Ju-Chi Yu ◽  
Vincenzo G. Fiore ◽  
Richard W. Briggs ◽  
Jacquelyn Braud ◽  
Katya Rubia ◽  
...  

AbstractThe anterior insular cortex (AIC) and its interconnected brain regions have been associated with both addiction and decision-making under uncertainty. However, the causal interactions in this uncertainty-encoding neurocircuitry and how these neural dynamics impact relapse remain elusive. Here, we used model-based fMRI to measure choice uncertainty in a motor decision task in 61 individuals with cocaine use disorder (CUD) and 25 healthy controls. CUD participants were assessed before discharge from a residential treatment program and followed for up to 24 weeks. We found that choice uncertainty was tracked by the AIC, dorsal anterior cingulate cortex (dACC), and ventral striatum (VS), across participants. Stronger activations in these regions measured pre-discharge predicted longer abstinence after discharge in individuals with CUD. Dynamic causal modelling revealed an AIC-to-dACC directed connectivity modulated by uncertainty in controls, but a dACC-to-AIC connectivity in CUD participants. This reversal was mostly driven by early-relapsers (<30 days). Furthermore, CUD individuals who displayed a stronger AIC-to-dACC excitatory connection during uncertainty encoding remained abstinent for longer periods. These findings reveal a critical role of an AIC-driven, uncertainty-encoding neurocircuitry in protecting against relapse and promoting abstinence.


2019 ◽  
Author(s):  
Rafal M. Skiba ◽  
Patrik Vuilleumier

AbstractPerception of emotional expressions in faces relies on the integration of distinct facial features. We used fMRI to examine the role of local and global motion information in facial movements during exposure to novel dynamic face stimuli. We found that synchronous expressions distinctively engaged medial prefrontal areas in the ventral anterior cingulate cortex (vACC), supplementary premotor areas, and bilateral superior frontal gyrus (global temporal-spatial processing). Asynchronous expressions in which one part of the face (e.g., eyes) unfolded before the other (e.g., mouth) activated more the right superior temporal sulcus (STS) and inferior frontal gyrus (local temporal-spatial processing). DCM analysis further showed that processing of asynchronous expression features was associated with a differential information flow, centered on STS, which received direct input from occipital cortex and projected to the amygdala. Moreover, STS and amygdala displayed selective interactions with vACC where the integration of both local and global motion cues (present in synchronous expressions) could take place. These results provide new evidence for a role of both local and global temporal dynamics in emotional expressions, extracted in partly separate brain pathways. Importantly, we show that dynamic expressions with synchronous movement cues may distinctively engage brain areas responsible for motor execution of expressions.


2022 ◽  
Vol 15 ◽  
Author(s):  
Ehsan Rezayat ◽  
Kelsey Clark ◽  
Mohammad-Reza A. Dehaqani ◽  
Behrad Noudoost

Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.


2019 ◽  
Author(s):  
Seng Bum Michael Yoo ◽  
Jiaxin Cindy Tu ◽  
Steven T. Piantadosi ◽  
Benjamin Yost Hayden

ABSTRACTIt remains unclear how and to what extent non-human animals make demanding on-the-fly predictions during pursuit. We studied this problem in a novel laboratory pursuit task that incentivizes prediction of future prey positions. We trained three macaques to perform joystick-controlled pursuit of prey that followed intelligent escape algorithms. Subjects reliably aimed towards the prey’s likely future positions, indicating that they generate internal predictions and use those predictions to guide behavior. We then developed a generative model that explains real-time pursuit trajectories and showed that our subjects use prey position, velocity, and acceleration to make predictions. We identified neurons in the dorsal anterior cingulate cortex (dACC) whose responses track these three variables. These neurons multiplexed prediction-related variables with a distinct and explicit representation of the prey’s future position. Our results provide a clear demonstration that the brain can explicitly represent future predictions and highlight the critical role of anterior cingulate cortex for future-oriented cognition.One-sentence summaryIn a dynamic pursuit environment, monkeys actively predict future prey positions and dACC neurons encode these future positions.


Sign in / Sign up

Export Citation Format

Share Document