scholarly journals Expression Analysis of SOCS Genes in Migraine

2021 ◽  
Vol 14 ◽  
Author(s):  
Soudeh Ghafouri-Fard ◽  
Kasra Honarmand Tamizkar ◽  
Arezou Sayad ◽  
Mohammad Taheri ◽  
Mohammad Samadian

Migraine is a complex neurological condition affecting a large proportion of persons. Dysregulation of several immune-related transcripts has been noted in migraineurs suggesting an immune-based background for this condition. We measured expression levels suppressor of cytokine signaling (SOCS) genes in the venous blood of migraineurs compared with controls. SOCS1 was down-regulated in patients without aura compared with controls [Ratio of mean expression (RME) = 0.08, P value < 0.001]. This pattern was also detected among female subgroups (RME = 0.06, P value = 0.010), but not among male subgroups (RME = 0.22, P value = 0.114). Expression of SOCS1 was significantly higher in patients with aura compared with those without aura (RME = 5.89, P value = 0.037). Meanwhile, expression of SOCS2 was lower in migraineurs with aura compared with controls (RME = 0.03, P value < 0.001). In addition, this gene was under-expressed in patients without aura compared with controls and in both sex-based subgroups of this group of patients (RME = 0.01, P value < 0.001 for all comparisons). However, its expression was higher in male patients with aura compared with those without aura (P value < 0.001). For SOCS3, we detected a lower level of expression in patients without aura compared with controls (RME = 0.07, P value < 0.001). However, the expression of SOCS3 was higher in patients with aura compared with those without aura (RME = 7.46, P value = 0.001). SOCS5 was down-regulated in patients without aura compared with controls (RME = 0.10, P value < 0.001). Expression of this gene was also lower in patients with aura compared with controls (RME = 0.03, P value < 0.001), and in male patients of this group compared with controls (RME = 0.03, P value = 0.004). On the other hand, expression of SOCS5 was higher in male patients with aura compared with sex-matched patients without aura (RME = 6.67, P value = 0.001). SOCS2 levels could appropriately differentiate migraineurs from healthy subjects. The current study suggests the role of SOCS genes in the pathoetiology of migraine.

BMC Cancer ◽  
2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Anastasios Stofas ◽  
Georgia Levidou ◽  
Christina Piperi ◽  
Christos Adamopoulos ◽  
Georgia Dalagiorgou ◽  
...  

2022 ◽  
pp. 104476
Author(s):  
Allysson Cramer ◽  
Izabela Galvão ◽  
Nathália Venturini de Sá ◽  
Paulo Gaio ◽  
Natália Fernanda de Melo Oliveira ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Christina Grothusen ◽  
Harald Schuett ◽  
Stefan Lumpe ◽  
Andre Bleich ◽  
Silke Glage ◽  
...  

Introduction: Atherosclerosis is a chronic inflammatory disease of the cardiovascular system which may result in myocardial infarction and sudden cardiac death. While the role of pro-inflammatory signaling pathways in atherogenesis has been well characterized, the impact of their negative regulators, e.g. suppressor of cytokine signaling (SOCS)-1 remains to be elucidated. Deficiency of SOCS-1 leads to death 3 weeks post-partum due to an overwhelming inflammation caused by an uncontrolled signalling of interferon-gamma (IFNγ). This phenotype can be rescued by generating recombination activating gene (rag)-2, SOCS-1 double knock out (KO) mice lacking mature lymphocytes, the major source of IFNγ. Since the role of SOCS-1 during atherogenesis is unknown, we investigated the impact of a systemic SOCS-1 deficiency in the low-density lipoprotein receptor (ldlr) KO model of atherosclerosis. Material and Methods: socs-1 −/− /rag-2 −/− deficient mice were crossed with ldlr-KO animals. Mice were kept under sterile conditions on a normal chow diet. For in-vitro analyses, murine socs-1 −/− macrophages were stimulated with native low density lipoprotein (nLDL) or oxidized (ox)LDL. SOCS-1 expression was determined by quantitative PCR and western blot. Foam cell formation was determined by Oil red O staining. Results: socs-1 −/− /rag-2 −/− /ldlr −/− mice were born according to mendelian law. Tripel-KO mice showed a reduced weight and size, were more sensitive to bacterial infections and died within 120 days (N=17). Histological analyses revealed a systemic, necrotic, inflammation in Tripel-KO mice. All other genotypes developed no phenotype. In-vitro observations revealed that SOCS-1 mRNA and protein is upregulated in response to stimulation with oxLDL but not with nLDL. Foam cell formation of socs-1 −/− macrophages was increased compared to controls. Conclusion: SOCS-1 seemingly controls critical steps of atherogenesis by modulating foam cell formation in response to stimulation with oxLDL. SOCS-1 deficiency in the ldlr-KO mouse leads to a lethal inflammation. These observations suggest a critical role for SOCS-1 in the regulation of early inflammatory responses in atherogenesis.


Blood ◽  
2011 ◽  
Vol 117 (16) ◽  
pp. 4293-4303 ◽  
Author(s):  
Changming Lu ◽  
Xin Huang ◽  
Xiaoxiao Zhang ◽  
Kristin Roensch ◽  
Qing Cao ◽  
...  

Abstract Dendritic cells (DCs) are potent antigen-presenting cells derived from hematopoietic progenitor cells and circulating monocytes. To investigate the role of microRNAs (miRNAs) during DC differentiation, maturation, and function, we profiled miRNA expression in human monocytes, immature DCs (imDCs), and mature DCs (mDCs). Stage-specific, differential expression of 27 miRNAs was found during monocyte differentiation into imDCs and mDCs. Among them, decreased miR-221 and increased miR-155 expression correlated with p27kip1 accumulation in DCs. Silencing of miR-221 or overexpressing of miR-155 in DCs resulted in p27kip1 protein increase and DC apoptosis. Moreover, mDCs from miR-155−/− mice were less apoptotic than those from wild-type mice. Silencing of miR-155 expression had little effect on DC maturation but reduced IL-12p70 production, whereas miR-155 overexpression in mDCs enhanced IL-12p70 production. Kip1 ubiquitination-promoting complex 1, suppressor of cytokine signaling 1, and CD115 (M-CSFR) were functional targets of miR-155. Furthermore, we provide evidence that miR-155 indirectly regulated p27kip1 protein level by targeting Kip1 ubiquitination-promoting complex 1. Thus, our study uncovered miRNA signatures during monocyte differentiation into DCs and the new regulatory role of miR-221 and miR-155 in DC apoptosis and IL-12p70 production.


2019 ◽  
Vol 11 (517) ◽  
pp. eaax0481 ◽  
Author(s):  
Tessa J. Barrett ◽  
Martin Schlegel ◽  
Felix Zhou ◽  
Mike Gorenchtein ◽  
Jennifer Bolstorff ◽  
...  

Platelets are best known as mediators of hemostasis and thrombosis; however, their inflammatory effector properties are increasingly recognized. Atherosclerosis, a chronic vascular inflammatory disease, represents the interplay between lipid deposition in the artery wall and unresolved inflammation. Here, we reveal that platelets induce monocyte migration and recruitment into atherosclerotic plaques, resulting in plaque platelet-macrophage aggregates. In Ldlr−/− mice fed a Western diet, platelet depletion decreased plaque size and necrotic area and attenuated macrophage accumulation. Platelets drive atherogenesis by skewing plaque macrophages to an inflammatory phenotype, increasing myeloid suppressor of cytokine signaling 3 (SOCS3) expression and reducing the Socs1:Socs3 ratio. Platelet-induced Socs3 expression regulates plaque macrophage reprogramming by promoting inflammatory cytokine production (Il6, Il1b, and Tnfa) and impairing phagocytic capacity, dysfunctions that contribute to unresolved inflammation and sustained plaque growth. Translating our data to humans with cardiovascular disease, we found that women with, versus without, myocardial infarction have up-regulation of SOCS3, lower SOCS1:SOCS3, and increased monocyte-platelet aggregate. A second cohort of patients with lower extremity atherosclerosis demonstrated that SOCS3 and the SOCS1:SOCS3 ratio correlated with platelet activity and inflammation. Collectively, these data provide a causative link between platelet-mediated myeloid inflammation and dysfunction, SOCS3, and cardiovascular disease. Our findings define an atherogenic role of platelets and highlight how, in the absence of thrombosis, platelets contribute to inflammation.


Inflammation ◽  
2015 ◽  
Vol 39 (1) ◽  
pp. 257-268 ◽  
Author(s):  
Chen Yang ◽  
Chunquan Zheng ◽  
Hai Lin ◽  
Jing Li ◽  
Keqing Zhao

2006 ◽  
Vol 6 (5) ◽  
pp. 361-366 ◽  
Author(s):  
Masato Kubo ◽  
Akemi Ozaki ◽  
Shinya Tanaka ◽  
Mariko Okamoto ◽  
Atsuki Fukushima

Sign in / Sign up

Export Citation Format

Share Document