scholarly journals Protein Kinase A in Human Retina: Differential Localization of Cβ, Cα, RIIα, and RIIβ in Photoreceptors Highlights Non-redundancy of Protein Kinase A Subunits

2021 ◽  
Vol 14 ◽  
Author(s):  
Jinae N. Roa ◽  
Yuliang Ma ◽  
Zbigniew Mikulski ◽  
Qianlan Xu ◽  
Ronit Ilouz ◽  
...  

Protein kinase A (PKA) signaling is essential for numerous processes but the subcellular localization of specific PKA regulatory (R) and catalytic (C) subunits has yet to be explored comprehensively. Additionally, the localization of the Cβ subunit has never been spatially mapped in any tissue even though ∼50% of PKA signaling in neuronal tissues is thought to be mediated by Cβ. Here we used human retina with its highly specialized neurons as a window into PKA signaling in the brain and characterized localization of PKA Cα, Cβ, RIIα, and RIIβ subunits. We found that each subunit presented a distinct localization pattern. Cα and Cβ were localized in all cell layers (photoreceptors, interneurons, retinal ganglion cells), while RIIα and RIIβ were selectively enriched in photoreceptor cells where both showed distinct patterns of co-localization with Cα but not Cβ. Only Cα was observed in photoreceptor outer segments and at the base of the connecting cilium. Cβ in turn, was highly enriched in mitochondria and was especially prominent in the ellipsoid of cone cells. Further investigation of Cβ using RNA BaseScope technology showed that two Cβ splice variants (Cβ4 and Cβ4ab) likely code for the mitochondrial Cβ proteins. Overall, our data indicates that PKA Cα, Cβ, RIIα, and RIIβ subunits are differentially localized and are likely functionally non-redundant in the human retina. Furthermore, Cβ is potentially important for mitochondrial-associated neurodegenerative diseases previously linked to PKA dysfunction.

2001 ◽  
Vol 21 (21) ◽  
pp. 8624-8635 ◽  
Author(s):  
Cecilia F. Vaquero ◽  
Angela Pignatelli ◽  
Gloria J. Partida ◽  
Andrew T. Ishida

2021 ◽  
Vol 288 (1942) ◽  
pp. 20202187
Author(s):  
Emily M. Dong ◽  
W. Ted Allison

Hagfish eyes are markedly basic compared to the eyes of other vertebrates, lacking a pigmented epithelium, a lens and a retinal architecture built of three cell layers: the photoreceptors, interneurons and ganglion cells. Concomitant with hagfish belonging to the earliest-branching vertebrate group (the jawless Agnathans), this lack of derived characters has prompted competing interpretations that hagfish eyes represent either a transitional form in the early evolution of vertebrate vision, or a regression from a previously elaborate organ. Here, we show the hagfish retina is not extensively degenerating during its ontogeny, but instead grows throughout life via a recognizable PAX6 + ciliary marginal zone. The retina has a distinct layer of photoreceptor cells that appear to homogeneously express a single opsin of the RH1 rod opsin class. The epithelium that encompasses these photoreceptors is striking because it lacks the melanin pigment that is universally associated with animal vision; notwithstanding, we suggest this epithelium is a homologue of gnathosome retinal pigment epithelium (RPE) based on its robust expression of RPE65 and its engulfment of photoreceptor outer segments. We infer that the hagfish retina is not entirely rudimentary in its wiring, despite lacking a morphologically distinct layer of interneurons: multiple populations of cells exist in the hagfish inner retina and subsets of these express markers of vertebrate retinal interneurons. Overall, these data clarify Agnathan retinal homologies, reveal characters that now appear to be ubiquitous across the eyes of vertebrates, and refine interpretations of early vertebrate visual system evolution.


2007 ◽  
Vol 85 (3) ◽  
pp. 488-496 ◽  
Author(s):  
Chuan-Jiang Yu ◽  
Yan Gao ◽  
Callie L. Willis ◽  
Ping Li ◽  
Joseph P. Tiano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document