scholarly journals Addition of Dairy Lipids and Probiotic Lactobacillus fermentum in Infant Formulas Modulates Proteolysis and Lipolysis With Moderate Consequences on Gut Physiology and Metabolism in Yucatan Piglets

2021 ◽  
Vol 8 ◽  
Author(s):  
Marion Lemaire ◽  
Olivia Ménard ◽  
Armelle Cahu ◽  
Isabelle Nogret ◽  
Valérie Briard-Bion ◽  
...  

Breast milk is the gold standard in neonatal nutrition, but most infants are fed infant formulas in which lipids are usually of plant origin. The addition of dairy lipids and/or milk fat globule membrane extracts in formulas improves their composition with beneficial consequences on protein and lipid digestion. The probiotic Lactobacillus fermentum (Lf) was reported to reduce transit time in rat pups, which may also improve digestion. This study aimed to investigate the effects of the addition of dairy lipids in formulas, with or without Lf, on protein and lipid digestion and on gut physiology and metabolism. Piglets were suckled from postnatal days 2 to 28, with formulas containing either plant lipids (PL), a half-half mixture of plant and dairy lipids (DL), or this mixture supplemented with Lf (DL+Lf). At day 28, piglets were euthanized 90 min after their last feeding. Microstructure of digesta did not differ among formulas. Gastric proteolysis was increased (P < 0.01) in DL and DL+Lf (21.9 ± 2.1 and 22.6 ± 1.3%, respectively) compared with PL (17.3 ± 0.6%) and the residual proportion of gastric intact caseins decreased (p < 0.01) in DL+Lf (5.4 ± 2.5%) compared with PL and DL (10.6 ± 3.1% and 21.8 ± 6.8%, respectively). Peptide diversity in ileum and colon digesta was lower in PL compared to DL and DL+Lf. DL and DL+Lf displayed an increased (p < 0.01) proportion of diacylglycerol/cholesterol in jejunum and ileum digesta compared to PL and tended (p = 0.07) to have lower triglyceride/total lipid ratio in ileum DL+Lf (0.019 ± 0.003) as compared to PL (0.045 ± 0.011). The percentage of endocrine tissue and the number of islets in the pancreas were decreased (p < 0.05) in DL+Lf compared with DL. DL+Lf displayed a beneficial effect on host defenses [increased goblet cell density in jejunum (p < 0.05)] and a trophic effect [increased duodenal (p = 0.09) and jejunal (p < 0.05) weights]. Altogether, our results demonstrate that the addition of dairy lipids and probiotic Lf in infant formula modulated protein and lipid digestion, with consequences on lipid profile and with beneficial, although moderate, physiological effects.

2014 ◽  
Vol 8 ◽  
pp. CMPed.S16962 ◽  
Author(s):  
Claude Billeaud ◽  
Giuseppe Puccio ◽  
Elie Saliba ◽  
Bernard Guillois ◽  
Carole Vaysse ◽  
...  

Objective This multicenter non-inferiority study evaluated the safety of infant formulas enriched with bovine milk fat globule membrane (MFGM) fractions. Methods Healthy, full-term infants ( n = 119) age ≤14 days were randomized to standard infant formula (control), standard formula enriched with a lipid-rich MFGM fraction (MFGM-L), or standard formula enriched with a protein-rich MFGM fraction (MFGM-P). Primary outcome was mean weight gain per day from enrollment to age 4 months (non-inferiority margin: –3.0 g/day). Secondary (length, head circumference, tolerability, morbidity, adverse events) and exploratory (phospholipids, metabolic markers, immune markers) outcomes were also evaluated. Results Weight gain was non-inferior in the MFGM-L and MFGM-P groups compared with the control group. Among secondary and exploratory outcomes, few between-group differences were observed. Formula tolerance rates were high (>94%) in all groups. Adverse event and morbidity rates were similar across groups except for a higher rate of eczema in the MFGM-P group (13.9% vs control [3.5%], MFGM-L [1.4%]). Conclusion Both MFGM-enriched formulas met the primary safety endpoint of non-inferiority in weight gain and were generally well tolerated, although a higher rate of eczema was observed in the MFGM-P group.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Sara Moukarzel ◽  
Roger A. Dyer ◽  
Cyrielle Garcia ◽  
Alejandra M. Wiedeman ◽  
Guilaine Boyce ◽  
...  

PEDIATRICS ◽  
1985 ◽  
Vol 75 (1) ◽  
pp. 151-156
Author(s):  
John B. Watkins

The importance of nutrient lipids to the developing preterm and term infant has served to focus investigations upon the mechanisms of fat digestion and absorption. The unique physical-chemical properties of the human milk fat globule have been reviewed. Emphasis is placed on the newer understandings that have emerged concerning the intraluminal phase of triglycerides hydrolysis and solubilization of the lipolytic products. The mechanisms of action of the pancreatic lipase, colipase, and phospholipase A2 system, and the importance of intragastric lipolysis for initiating the lipid digestion are explored. Lastly, aspects of bile acid micelle formation and its role on nutrient lipid solubilization and absorption are examined in view of the postnatal adaptations that occur with weaning and the introduction of alternative nutrient sources to the older infant.


2016 ◽  
Vol 61 ◽  
pp. 228-238 ◽  
Author(s):  
Lorena Claumarchirant ◽  
Antonio Cilla ◽  
Esther Matencio ◽  
Luis Manuel Sanchez-Siles ◽  
Pilar Castro-Gomez ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


Sign in / Sign up

Export Citation Format

Share Document