scholarly journals Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics

2017 ◽  
Vol 7 ◽  
Author(s):  
Varda Shoshan-Barmatz ◽  
Yakov Krelin ◽  
Anna Shteinfer-Kuzmine ◽  
Tasleem Arif
2018 ◽  
Author(s):  
Hui San Chin ◽  
Mark F. van Delft ◽  
Robert L. Ninnis ◽  
Mark X. Li ◽  
Iris K. L. Tan ◽  
...  

AbstractIntrinsic apoptosis is critical for normal physiology including the prevention of tumor formation. BAX and BAK are essential for mediating this process and for the cytotoxic action of many anticancer drugs. BAX and BAK are thought to act in a functionally redundant manner and are considered to be regulated similarly. From an unbiased genome-wide CRISPR/Cas9 screen, we identified VDAC2 (voltage-dependent anion channel 2) as essential for BAX, but not BAK, to function. The genetic deletion of VDAC2 abrogated the association of BAX and BAK with mitochondrial complexes that contain VDAC1, VDAC2 and VDAC3. By disrupting its localization to mitochondria, BAX is rendered completely ineffective. Moreover, we defined an interface unique to VDAC2 that is required to drive BAX activity. Consequently, interfering with this interaction or deleting VDAC2 phenocopied the loss of BAX, including impairing the killing of tumor cells by anti-cancer agents such as the BCL-2 inhibitor venetoclax. Furthermore, the ability of BAX to prevent tumor formation was attenuated in the absence of VDAC2. Taken together, our studies show for the first time that BAX-mediated apoptosis, but not BAK-mediated apoptosis, is critically dependent on VDAC2, hence revealing the differential regulation of BAX and BAK.


2020 ◽  
Vol 27 (6) ◽  
pp. 164-174
Author(s):  
N. V. Schcetinina ◽  
A. A. Bolotskaia

Background. Cardiovascular diseases, especially in association with arrhythmias, remain a prevailing cause of death worldwide. Arrhythmia related to imbalanced Ca2+ homeostasis is triggered by aberrant spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum through cardiac ryanodine receptor-Ca2+ release channel (RyR2). Voltage-dependent anion channel 2 (VDAC2) is the only mammalian specific isoform also carrying a specific cardiac function.Objectives. Description of VDAC2-mediated regulation of Ca2+ concentration in cardiomyocytes. Methods. Literature sources were mined in the MedLine/PubMed and eLibrary databases with keywords “heart AND calcium”, “heart AND VDAC2”, with a subsequent analysis.Results. From 36 English-language sources, 5 were included in the review. We summarise that potentiated VDAC2 promotes mitochondrial transport of Ca2+ ions, and suppression of the channel leads to Ca2+ imbalances. Efsevin renders the channel more cation-selective and downregulates Ca2+ concentration in diastole.Conclusion. VDAC2 comprises a potential drug target in therapy for severe arrhythmias. Efsevin is a promising agent for correcting abnormal Ca2+ transport in cardiomyocytes as an accelerator of mitochondrial Ca2+ uptake.


2010 ◽  
Vol 9 (12) ◽  
pp. 1053-1056 ◽  
Author(s):  
Saroj P. Mathupala ◽  
Peter L. Pedersen

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hadar Klapper-Goldstein ◽  
Ankit Verma ◽  
Sigal Elyagon ◽  
Roni Gillis ◽  
Michael Murninkas ◽  
...  

AbstractThe voltage-dependent anion channel 1 (VDAC1) is a key player in mitochondrial function. VDAC1 serves as a gatekeeper mediating the fluxes of ions, nucleotides, and other metabolites across the outer mitochondrial membrane, as well as the release of apoptogenic proteins initiating apoptotic cell death. VBIT-4, a VDAC1 oligomerization inhibitor, was recently shown to prevent mitochondrial dysfunction and apoptosis, as validated in mouse models of lupus and type-2 diabetes. In the present study, we explored the expression of VDAC1 in the diseased myocardium of humans and rats. In addition, we evaluated the effect of VBIT-4 treatment on the atrial structural and electrical remodeling of rats exposed to excessive aldosterone levels. Immunohistochemical analysis of commercially available human cardiac tissues revealed marked overexpression of VDAC1 in post-myocardial infarction patients, as well as in patients with chronic ventricular dilatation\dysfunction. In agreement, rats exposed to myocardial infarction or to excessive aldosterone had a marked increase of VDAC1 in both ventricular and atrial tissues. Immunofluorescence staining indicated a punctuated appearance typical for mitochondrial-localized VDAC1. Finally, VBIT-4 treatment attenuated the atrial fibrotic load of rats exposed to excessive aldosterone without a notable effect on the susceptibility to atrial fibrillation episodes induced by burst pacing. Our results indicate that VDAC1 overexpression is associated with myocardial abnormalities in common pathological settings. Our data also indicate that inhibition of the VDAC1 can reduce excessive fibrosis in the atrial myocardium, a finding which may have important therapeutic implications. The exact mechanism\s of this beneficial effect need further studies.


2012 ◽  
Vol 8 (3) ◽  
pp. 446-449 ◽  
Author(s):  
Nadine Flinner ◽  
Enrico Schleiff ◽  
Oliver Mirus

The eukaryotic porin superfamily consists of two families, voltage-dependent anion channel (VDAC) and Tom40, which are both located in the mitochondrial outer membrane. In Trypanosoma brucei , only a single member of the VDAC family has been described. We report the detection of two additional eukaryotic porin-like sequences in T. brucei . By bioinformatic means, we classify both as putative VDAC isoforms.


Sign in / Sign up

Export Citation Format

Share Document