scholarly journals Minimal Residual Disease Detection by Next-Generation Sequencing in Multiple Myeloma: A Comparison With Real-Time Quantitative PCR

2021 ◽  
Vol 10 ◽  
Author(s):  
Qiumei Yao ◽  
Yinlei Bai ◽  
Shaji Kumar ◽  
Elaine Au ◽  
Alberto Orfao ◽  
...  

Here we compared clonotype identification by allele-specific oligonucleotide real-time quantitative-PCR (ASO RQ-PCR) and next-generation sequencing (NGS) in 80 multiple myeloma patients. ASO RQ-PCR was applicable in 49/55 (89%) and NGS in 62/78 (80%). Clonotypes identified by both methods were identical in 33/35 (94%). Sensitivity of 10−5 was confirmed in 28/29 (96%) by NGS while sensitivity of RQ-PCR was 10−5 in 7 (24%), 5 × 10−5 in 15 (52%), and 10−4 in 7 (24%). Among 14 samples quantifiable by ASO RQ-PCR, NGS yielded comparable results in 12 (86%). Applicability of NGS can be improved if immunoglobulin heavy-chain incomplete DJ primers are included.


Leukemia ◽  
2013 ◽  
Vol 28 (6) ◽  
pp. 1299-1307 ◽  
Author(s):  
M Ladetto ◽  
M Brüggemann ◽  
L Monitillo ◽  
S Ferrero ◽  
F Pepin ◽  
...  


2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Alejandro Medina ◽  
Noemi Puig ◽  
Juan Flores-Montero ◽  
Cristina Jimenez ◽  
M.-Eugenia Sarasquete ◽  
...  

Abstract Detecting persistent minimal residual disease (MRD) allows the identification of patients with an increased risk of relapse and death. In this study, we have evaluated MRD 3 months after transplantation in 106 myeloma patients using a commercial next-generation sequencing (NGS) strategy (LymphoTrack®), and compared the results with next-generation flow (NGF, EuroFlow). The use of different marrow pulls and the need of concentrating samples for NGS biased the applicability for MRD evaluation and favored NGF. Despite that, correlation between NGS and NGF was high (R2 = 0.905). The 3-year progression-free survival (PFS) rates by NGS and NGF were longer for undetectable vs. positive patients (NGS: 88.7% vs. 56.6%; NGF: 91.4% vs. 50%; p < 0.001 for both comparisons), which resulted in a 3-year overall survival (OS) advantage (NGS: 96.2% vs. 77.3%; NGF: 96.6% vs. 74.9%, p < 0.01 for both comparisons). In the Cox regression model, NGS and NGF negativity had similar results but favoring the latter in PFS (HR: 0.20, 95% CI: 0.09–0.45, p < 0.001) and OS (HR: 0.21, 95% CI: 0.06–0.75, p = 0.02). All these results reinforce the role of MRD detection by different strategies in patient prognosis and highlight the use of MRD as an endpoint for multiple myeloma treatment.



2019 ◽  
Vol 20 (12) ◽  
pp. 2929 ◽  
Author(s):  
Nicoletta Coccaro ◽  
Luisa Anelli ◽  
Antonella Zagaria ◽  
Giorgina Specchia ◽  
Francesco Albano

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and accounts for about a quarter of adult acute leukemias, and features different outcomes depending on the age of onset. Improvements in ALL genomic analysis achieved thanks to the implementation of next-generation sequencing (NGS) have led to the recent discovery of several novel molecular entities and to a deeper understanding of the existing ones. The purpose of our review is to report the most recent discoveries obtained by NGS studies for ALL diagnosis, risk stratification, and treatment planning. We also report the first efforts at NGS use for minimal residual disease (MRD) assessment, and early studies on the application of third generation sequencing in cancer research. Lastly, we consider the need for the integration of NGS analyses in clinical practice for genomic patients profiling from the personalized medicine perspective.





Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 584 ◽  
Author(s):  
Marica Garziera ◽  
Rossana Roncato ◽  
Marcella Montico ◽  
Elena De Mattia ◽  
Sara Gagno ◽  
...  

Next-generation sequencing (NGS) technology has advanced knowledge of the genomic landscape of ovarian cancer, leading to an innovative molecular classification of the disease. However, patient survival and response to platinum-based treatments are still not predictable based on the tumor genetic profile. This retrospective study characterized the repertoire of somatic mutations in advanced ovarian cancer to identify tumor genetic markers predictive of platinum chemo-resistance and prognosis. Using targeted NGS, 79 primary advanced (III–IV stage, tumor grade G2-3) ovarian cancer tumors, including 64 high-grade serous ovarian cancers (HGSOCs), were screened with a 26 cancer-genes panel. Patients, enrolled between 1995 and 2011, underwent primary debulking surgery (PDS) with optimal residual disease (RD < 1 cm) and platinum-based chemotherapy as first-line treatment. We found a heterogeneous mutational landscape in some uncommon ovarian histotypes and in HGSOC tumor samples with relevance in predicting platinum sensitivity. In particular, we identified a poor prognostic signature in patients with HGSOC harboring concurrent mutations in two driver actionable genes of the panel. The tumor heterogeneity described, sheds light on the translational potential of targeted NGS approach for the identification of subgroups of patients with distinct therapeutic vulnerabilities, that are modulated by the specific mutational profile expressed by the ovarian tumor.



2012 ◽  
Vol 89 (4) ◽  
pp. 328-335 ◽  
Author(s):  
Noemí Puig ◽  
María E. Sarasquete ◽  
Miguel Alcoceba ◽  
Ana Balanzategui ◽  
María C. Chillón ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document