scholarly journals Identification of Somatic Genetic Alterations Using Whole-Exome Sequencing of Uterine Leiomyosarcoma Tumors

2021 ◽  
Vol 11 ◽  
Author(s):  
Lihua Chen ◽  
Jiajia Li ◽  
Xiaohua Wu ◽  
Zhong Zheng

BackgroundThe genomic abnormalities associated with uterine leiomyosarcoma (uLMS) have not been fully elucidated to date.ObjectiveTo understand the pathogenesis of uLMS and to identify driver mutations and potential therapeutic targets in uLMS.MethodsThree matched tumor-constitutional DNA pairs from patients with recurrent uLMS were subjected to whole-exome capture and next-generation sequencing. The role of the selected gene SHARPIN in uLMS was analyzed by the CCK-8 assay and colony formation assay after specific siRNA knockdown.ResultsWe identified four genes with somatic SNVs, namely, SLC39A7, GPR19, ZNF717, and TP53, that could be driver mutations. We observed that 30.7% (4/13) of patients with uLMS had TP53 mutations as analyzed by direct sequencing. Analysis of somatic copy number variants (CNVs) showed regions of chromosomal gain at 1q21-23, 19p13, 17q21, and 17q25, whereas regions of chromosomal loss were observed at 2q35, 2q37, 1p36, 10q26, 6p22, 8q24, 11p15, 11q12, and 9p21. The SHARPIN gene was amplified in two patients and mutated in another (SHARPIN: NM_030974: exon2: c.G264C, p.E88D). Amplification of the SHARPIN gene was associated with shorter PFS and OS in soft tissue sarcoma, as shown by TCGA database analysis. Knockdown of SHARPIN expression was observed to decrease cell growth and colony formation in uterine sarcoma cell lines.ConclusionsExome sequencing revealed mutational heterogeneity of uLMS. The SHARPIN gene was amplified in uLMS and could be a candidate oncogene.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 156-156
Author(s):  
Haowen Xiao ◽  
Yi Luo ◽  
Xiaoyu Lai ◽  
Jimin Shi ◽  
Yamin Tan ◽  
...  

Abstract Introduction Although steady progress of effective chemotherapy in childhood acute lymphoblastic leukemia (ALL) carried with exceeding 80% of individuals now cured, the majority of adult patients with ALL are not cured by chemotherapy, and allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative option. However, relapse remains the most leading cause of death after allo-HSCT. Adverse genetic alterations are generally accepted to be responsible for treatment failure and relapse. Several structural chromosomal alterations including rearrangement of the myeloid-lymphoid or mixed-lineage leukemia gene (MLL) and Philadelphia chromosome (Ph), have been mostly found in relapsed ALL. However, many Ph-negative (Ph-) ALL patients with normal karyotype , lacking known risk factors, also experienced relapse. The underlying pathologic determinants leading to relapse and prognostic markers in these cases remain poorly understood. More importantly, allo-HSCT is a distinct treatment option from tradtional chemotherapy and has 2 important forms to eliminate and select on malignant cells. The malignant cells that go on to causing relapse must initially survive ablation of chemotherapy before allo-HSCT and conditioning regimen in allo-HSCT. Then, after allo-HSCT, they must survive the effect of graft-versus- leukemia (GVL) reaction. Following this rationale, we hypothesized that there may be pivotal genetic causes confer leukemic cells a fitness advantage to undergo huge selective pressures and expand after allo-HSCT. To elucidate the genomic basis underlying relapse after allo-HSCT to aid to discover novel predictive biomarkers and identify therapeutic targets, we carried out the first whole-exome sequencing analysis in longitudinal matched samples from diagnosis to relapse after allo-HSCT in adult patients with the most common subtype of ALL, Ph- B-cell ALL (B-ALL). Methods Whole-exome sequencing was conducted for 9 genomic DNA samples from 3 relapsed cases with Ph- B-ALL (discovery cohort) at 3 specific time points including: diagnosis, complete remission (CR) after induction chemotherapy before allo-HSCT, relapse after allo-HSCT to discover candidate relapse-associated mutated genes. We identified putative somatic mutations by comparing each tumor ( diagnostic samples or relapsed samples) to normal (CR samples) from the same patient. To confirm candidate somatic gene mutations, screen relapse-associated gene mutations and define the frequency of somatic mutations identified by whole-exome sequencing analysis, we further carried out target genes whole coding regions sequencing in an ALL extended validation cohort including 58 adult Ph- B-ALL cases, where 27 patients experienced relapse at a median time of 6.5 (range 2-33) months after allo-HSCT and 31 patients did not relapse after allo-HSCT at a median follow-up for 34 (range 12–56) months. Results (1) We discovered novel associations of recurrently mutated genes (CREBBP, KRAS, PTPN21) with the pathogenesis of adult Ph- B-ALL relapse after allo-HSCT, which were mutated in at least two relapsed cases, but were not mutated in non- relapsed patients. (2) The generation of high-depth whole-exome sequencing data in longitudinal matched samples from diagnosis to relapse after allo-HSCT in initial 3 patients allowed us to directly assessed the evolution of somatic mutations. Our data suggested that in the progression of leukemia relapse after allo-HSCT, the relapse clone had a clear relationship to the diagnosis clone, either arising from a subclone already exsiting in the diagnostic tumor, or originating from a common preleukemic progenitor with the diagnosis clone. In the latter pattern, the relapse clone acquires new genetic alterations while retaining some but not all of the alterations found in the diagnostic tumor. In contrast, in some cases, leukemia recurrences afer allo-HSCT may be composed of second malignancies with completely distinct sets of mutations from the primary tumor. Conclusions Our study is the first to explore genetic basis of adult Ph- B-ALL from diagnosis to relapse after allo-HSCT over time, which will provide novel genetic biomarkers on risk “index” to improve individualized treatment intensification and intervention strategies, and potential therapeutic targets for Ph--ALL relapse after allo-HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1410-1410
Author(s):  
Kenichi Yoshida ◽  
Norio Shiba ◽  
Yuichi Shiraishi ◽  
Akira Shimada ◽  
Kiminori Terui ◽  
...  

Abstract Background Pediatric acute myeloid leukemia (AML) comprises ∼20% of pediatric leukemia, representing one of the major therapeutic challenges in pediatric oncology. Nearly 40% of patients still relapse after present first-line therapies and once the relapse occurs, the long-term survival rates decrease, ranging from 21% to 34%. As for the pathogenesis of AML relapse, the recent development of massively parallel sequencing technologies has provided a new opportunity to investigate comprehensive genetic alterations that are involved in tumor recurrence of adult AML. However, little is known about the molecular details of relapsed pediatric AML. Methods In order to reveal the clonal origin and the major mutational events in relapsed pediatric AML, we performed whole exome sequencing of 4 trio samples from diagnostic, relapsed and complete remission phases using Illumina HiSeq 2000. Copy number abnormalities were also detected using whole exome sequencing. Subsequently, deep sequencing of identified mutations was performed to evaluate intra-tumor heterogeneity and the clonolocal history of relapsed clones. Results Whole-exome sequencing of 12 samples from 4 patients were analyzed with a mean coverage of more than x100, and 95 % of the targeted sequences were analyzed at more than x20 depth on average. A total of 98 somatic mutations were identified, where mean number of non-silent mutations was higher at relapsed phase than at the time of diagnosis (14.0/case vs 10.5/case) (p=0.270). Assessment of clonality using variant allele frequencies of individual mutations suggested that some mutations were subclonal mutations, consisting of intra-tumor heterogeneity both at the time of diagnosis and at relapse. In all 4 patients, relapsed AML evolved from one of the subclones at the initial phase, which was accompanied by many additional mutations including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process of leukemia recurrence. Forty-six out of the 98 mutations were specific either at the time of diagnosis (n = 16) or at relapse (n = 30). Relapse-specific mutations and copy number changes were found in several genes including known drivers such as NRAS and CREBBP. These mutations were further investigated in an extended cohort of relapsed pediatric AML samples using targeted sequencing to evaluate their prevalence. In some cases, AML relapse may accompany a dynamic clonal change. For example, some bona fide driver mutations, such as KRAS mutations, that were predominant at the time of diagnosis disappeared in relapsed samples. Discussion Whole exome sequencing unmasked clonal structure of primary and relapsed pediatric AML, which helped to understand the underlying mechanism of relapse in pediatric AML. Our results suggested that pediatric AML has intra-tumor heterogeneity and subclonal mutations such as NRAS and CREBBP occurring in one of the subclones could drive the AML relapse. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 126 (6) ◽  
pp. 1879-1883 ◽  
Author(s):  
Baran Yılmaz ◽  
Zafer Orkun Toktaş ◽  
Akın Akakın ◽  
Semra Işık ◽  
Kaya Bilguvar ◽  
...  

OBJECTIVEBrain arteriovenous malformations (AVMs) can occur in patients with hereditary hemorrhagic telangiectasia (HHT). However, brain AVM without HHT has also been reported. Using whole exome sequencing, the authors performed comprehensive genomic characterization of a 6-person Turkish family with 3 cases of brain AVM without HHT.METHODSThree siblings with brain AVM, one of whom also had spinal AVM, were evaluated. The parents and the fourth sibling had no AVM on cranial MRI. The authors performed a whole exome capture and Illumina sequencing on blood samples from 2 siblings with AVM.RESULTSAn ACVRL1 heterozygous mutation (p.Lys332Glu) was identified in 2 patients via whole exome sequencing. Variant segregation was confirmed using direct Sanger sequencing.CONCLUSIONSStudy results suggested that whole exome sequencing analysis is particularly useful in cases of locus heterogeneity and uncertain diagnostic classification schemes in patients with hereditary brain AVM.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2593-2593
Author(s):  
Il-Kwon Lee ◽  
Namshin Kim ◽  
Yeo-Kyeoung Kim ◽  
Dennis Dong Hwan Kim ◽  
Quang Trinh ◽  
...  

Abstract Abstract 2593 Background: NK-AML represents genetically heterogeneous group of disease. However genetic lesions affecting treatment outcome in patients with NK-AML are relatively unknown. Methods: The discovery cohort consists of 67 NK-AML patients in complete remission (median age: 49.2, ranges: 19–70) without FLT-3 mutations. Genomic DNA was extracted from enriched AML cells at diagnosis or control specimens obtained after complete remission. Whole exomes were captured using Agilent SureSelect and sequencing were performed by HiSeq2000 with 41∼89× coverage. Bioinformatics analysis and identification of somatic mutation has been done by series of software such as BWA, Picard, GATK, VarScan 2, and custom-made scripts. All the data has been re-checked by manual inspection. Validation has been done independent set of cohort (358 NK-AML patients, median age: 51, ranges: 15–85) with Sanger sequencing on highly mutated target sites. Results: Filtering against dbSNP and COSMIC database generated 485 genes with somatic and structural variations. Among them, 41 genes were detected in more than two patients. In addition to well-known 28 mutations, 13 novel mutations with different frequencies were identified including genes responsible for structural maintenance of chromosome (SMC1A, 6.0%) and tumor suppressor function (FAT1, 6.0%). Most common type of mutation was missense mutation (70.8%), and substantial fraction of mutation was splicing site mutations (3.8%). The hematological system development and hematologic function were most highly enriched by the Ingenuity Pathway Analysis (IPA) as expected. CIRCOS plot analysis showed similar co-occurring pattern of recurrent mutations with previous reports. Hierarchical clustering analysis divided into four different groups according to the number of harboring mutations. In network analysis four distinct subgroups were observed ranging 21 to 3 gene network. Conclusion: Using whole exome sequencing approach, a catalog of recurrent mutations was successfully defined in the patients with NK-AML without FLT3/ITD mutation. This candidate list of novel mutations should be tested further for therapeutic target and prognostic marker in the patients with NK-AML. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
pp. S549-S557 ◽  
Author(s):  
P. SOUCEK ◽  
V. HLAVAC ◽  
K. ELSNEROVA ◽  
R. VACLAVIKOVA ◽  
R. KOZEVNIKOVOVA ◽  
...  

The aim of the present study was to introduce methods for exome sequencing of two ATP-binding cassette (ABC) transporters ABCC8 and ABCD2 recently suggested to play a putative role in breast cancer progression and prognosis of patients. We performed next generation sequencing targeted at analysis of all exons in ABCC8 and ABCD2 genes and surrounding noncoding sequences in blood DNA samples from 24 patients with breast cancer. The revealed alterations were characterized by in silico tools. We then compared the most frequent functionally relevant polymorphism rs757110 in ABCC8 with clinical data of patients. In total, the study identified 113 genetic alterations (>70 % novel ones) in both genes. Of these alterations, 83 were noncoding, 13 synonymous, 10 frameshifts and 7 were missense alterations. Four in silico programs predicted pathogenicity of two polymorphisms and four newly identified alterations. Rs757110 polymorphism in ABCC8 did not significantly associate with clinical data of the patients. In conclusion, exome sequencing identified several functionally relevant alterations in ABCC8 and ABCD2 genes that may further be used for a larger follow-up study aiming to assess their clinical significance.


2020 ◽  
pp. 1-9
Author(s):  
Shuhang Wang ◽  
Ning Jiang ◽  
Zicheng Yu ◽  
Yuan Fang ◽  
Shujun Xing ◽  
...  

Oral tongue squamous cell carcinoma (OTSCC) is a common malignancy, of which the incidence has increased in China in the last decade. Surprisingly, while multiple studies have revealed the mutational features of OTSCC in Western populations, limited data was shown in Asian patients. Herein, we utilized whole-exome sequencing to profile the genetic alterations in 13 Chinese OTSCC and compared them to those from 40 Western patients published in Cancer Discovery. In result, some key driver mutations were observed in both Chinese and Western cohorts, such as TP53 (Chinese 60.0% vs Western 60.0%), FAT1 (Chinese 7.7% vs Western 30.0%), CASP8 (Chinese 7.7% vs Western 10.0%) and NOTCH1 (Chinese 15.4% vs Western 10.0%), while mutations in CDKN2A (23.1%) and NTRK3 (23.1%) were only observed in Chinese patients, indicating these two novel mutations might play vital roles in OTSCC tumorigenesis specifically in Asian population. Mutational signatures depicted both common and distinct features across cohorts. In addition, significant copy number loss was found in 7q22.1, 9q13.1, and focal regions spanning CDKN2A and CDKN2B. FOXP1-TEX261 (2p13.3:3p13) fusion, reported in various cancer types, was firstly observed in OTSCC. Also, we identified numerous actionable mutations with FDA approved targeted. Taken together, our study revealed the mutational features of Chinese OTSCC patients, either similar or distinct to those of Caucasian patients. CDKN2A and NTRK3 were observed as two novel drivers that might play essential roles in tumorigenesis in Chinese patients, and were found as two potential therapeutic targets, rendering it promising to develop novel therapies.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Xu ◽  
Yong-Biao Zhang ◽  
Li-Jun Liang ◽  
Jia-Li Tian ◽  
Jin-Ming Lin ◽  
...  

Abstract Background Hereditary hemorrhagic telangiectasia (HHT) is a disease characterized by arteriovenous malformations in the skin and mucous membranes. We enrolled a large pedigree comprising 32 living members, and screened for mutations responsible for HHT. Methods We performed whole-exome sequencing to identify novel mutations in the pedigree after excluding three previously reported HHT-related genes using Sanger sequencing. We then performed in silico functional analysis of candidate mutations that were obtained using a variant filtering strategy to identify mutations responsible for HHT. Results After screening the HHT-related genes, activin A receptor-like type 1 (ACVRL1), endoglin (ENG), and SMAD family member 4 (SMAD4), we did not detect any co-segregated mutations in this pedigree. Whole-exome sequencing analysis of 7 members and Sanger sequencing analysis of 16 additional members identified a mutation (c.784A > G) in the NSF attachment protein gamma (NAPG) gene that co-segregated with the disease. Functional prediction showed that the mutation was deleterious and might change the conformational stability of the NAPG protein. Conclusions NAPG c.784A > G may potentially lead to HHT. These results expand the current understanding of the genetic contributions to HHT pathogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alana R. Rodney ◽  
Reuben M. Buckley ◽  
Robert S. Fulton ◽  
Catrina Fronick ◽  
Todd Richmond ◽  
...  

AbstractOver 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth > 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model.


Sign in / Sign up

Export Citation Format

Share Document