scholarly journals A domestic cat whole exome sequencing resource for trait discovery

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alana R. Rodney ◽  
Reuben M. Buckley ◽  
Robert S. Fulton ◽  
Catrina Fronick ◽  
Todd Richmond ◽  
...  

AbstractOver 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth > 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model.

2020 ◽  
Author(s):  
Alana R. Rodney ◽  
Reuben M. Buckley ◽  
Robert S. Fulton ◽  
Catrina Fronick ◽  
Todd Richmond ◽  
...  

AbstractOver 94 million domestic cats are considered pets, who, as our companions, are also susceptible to cancers, common and rare diseases. Whole exome sequencing (WES) is a cost-effective strategy to study their putative disease-causing variants. Presented is ~35.8 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. WES was conducted on 41 cats from various breeds with known and unknown diseases and traits, including 10 cats with prior whole genome sequence (WGS) data available, to test WES capture probe performance. A WES and WGS comparison was completed to understand variant discovery capability of each platform. At ~80x exome coverage, the percent of on-target base coverage >20x was 96.4% with an average of 10.4% off-target. For variant discovery, greater than 98% of WGS SNPs were also discovered by WES. Platform specific variants were mainly restricted to a small number of sex chromosome and olfactory receptor genes. Within the 41 cats with ~31 diseases and normal traits, 45 previously known disease or trait causal variants were observed, such as Persian progressive retinal degeneration and hydrocephalus. Novel candidate variants for polycystic kidney disease and atrichia in the Peterbald breed were also identified as well as a new cat patient with a known variant for cystinuria. These results show the discovery potential of deep exome sequencing to validate existing disease gene models and identify novel gene candidate alleles for many common and rare diseases in cats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feifan Xiao ◽  
Yulan Lu ◽  
Bingbing Wu ◽  
Bo Liu ◽  
Gang Li ◽  
...  

Next-generation sequencing (NGS) has been used to detect severe combined immunodeficiency (SCID) in patients, and some patients with DNA cross-link repair 1C (DCLRE1C) variants have been identified. Moreover, some compound variants, such as copy number variants (CNV) and single nucleotide variants (SNV), have been reported. The purpose of this study was to expand the genetic data related to patients with SCID carrying the compound DCLRE1C variant. Whole-exome sequencing (WES) was performed for genetic analysis, and variants were verified by performing Sanger sequencing or quantitative PCR. Moreover, we searched PubMed and summarized the data of the reported variants. Four SCID patients with DCLRE1C variants were identified in this study. WES revealed a homozygous deletion in the DCLRE1C gene from exons 1–5 in patient 1, exons 1–3 deletion and a novel rare variant (c.92T>C, p.L31P) in patient 2, exons 1–3 deletion and a novel rare variant (c.328C>G, p.L110V) in patient 3, and exons 1–4 deletion and a novel frameshift variant (c.449dup, p.His151Alafs*20) in patient 4. Based on literature review, exons 1–3 was recognized as a hotspot region for deletion variation. Moreover, we found that compound variations (CNV + SNV) accounted for approximately 7% variations in all variants. When patients are screened for T-cell receptor excision circles (TRECs), NGS can be used to expand genetic testing. Deletion of the DCLRE1C gene should not be ignored when a variant has been found in patients with SCID.


2016 ◽  
Vol 15 ◽  
pp. CIN.S36612 ◽  
Author(s):  
Lun-Ching Chang ◽  
Biswajit Das ◽  
Chih-Jian Lih ◽  
Han Si ◽  
Corinne E. Camalier ◽  
...  

With rapid advances in DNA sequencing technologies, whole exome sequencing (WES) has become a popular approach for detecting somatic mutations in oncology studies. The initial intent of WES was to characterize single nucleotide variants, but it was observed that the number of sequencing reads that mapped to a genomic region correlated with the DNA copy number variants (CNVs). We propose a method RefCNV that uses a reference set to estimate the distribution of the coverage for each exon. The construction of the reference set includes an evaluation of the sources of variability in the coverage distribution. We observed that the processing steps had an impact on the coverage distribution. For each exon, we compared the observed coverage with the expected normal coverage. Thresholds for determining CNVs were selected to control the false-positive error rate. RefCNV prediction correlated significantly ( r = 0.96–0.86) with CNV measured by digital polymerase chain reaction for MET (7q31), EGFR (7p12), or ERBB2 (17q12) in 13 tumor cell lines. The genome-wide CNV analysis showed a good overall correlation (Spearman's coefficient = 0.82) between RefCNV estimation and publicly available CNV data in Cancer Cell Line Encyclopedia. RefCNV also showed better performance than three other CNV estimation methods in genome-wide CNV analysis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 228-228
Author(s):  
Joachim Kunz ◽  
Tobias Rausch ◽  
Obul R Bandapalli ◽  
Martina U. Muckenthaler ◽  
Adrian M Stuetz ◽  
...  

Abstract Acute precursor T-lymphoblastic leukemia (T-ALL) remains a serious challenge in pediatric oncology, because relapses carry a particularly poor prognosis with high rates of induction failure and death despite generally excellent treatment responses of the initial disease. It is critical, therefore, to understand the molecular evolution of pediatric T-ALL and to elucidate the mechanisms leading to T-ALL relapse and to understand the differences in treatment response between the two phases of the disease. We have thus subjected DNA from bone marrow samples obtained at the time of initial diagnosis, remission and relapse of 14 patients to whole exome sequencing (WES). Eleven patients suffered from early relapse (duration of remission 6-19 months) and 3 patients from late relapse (duration of remission 29-46 months).The Agilent SureSelect Target Enrichment Kit was used to capture human exons for deep sequencing. The captured fragments were sequenced as 100 bp paired reads using an Illumina HiSeq2000 sequencing instrument. All sequenced DNA reads were preprocessed using Trimmomatic (Lohse et al., Nucl. Acids Res., 2012) to clip adapter contaminations and to trim reads for low quality bases. The remaining reads greater than 36bp were mapped to build hg19 of the human reference genome with Stampy (Lunter & Goodson, Genome Res. 2011), using default parameters. Following such preprocessing, the number of mapped reads was >95% for all samples. Single-nucleotide variants (SNVs) were called using SAMtools mpileup (Li et al., Bioinformatics, 2009). The number of exonic SNVs varied between 23,741 and 31,418 per sample. To facilitate a fast classification and identification of candidate driver mutations, all identified coding SNVs were comprehensively annotated using the ANNOVAR framework (Wang et al., Nat. Rev. Genet., 2010). To identify possible somatic driver mutations, candidate SNVs were filtered for non-synonymous, stopgain or stoploss SNVs, requiring an SNV quality greater or equal to 50, and requiring absence of segmental duplications. Leukemia-specific mutations were identified by filtering against the corresponding remission sample and validated by Sanger sequencing of the genomic DNA following PCR amplification. We identified on average 9.3 somatic single nucleotide variants (SNV) and 0.6 insertions and deletions (indels) per patient sample at the time of initial diagnosis and 21.7 SNVs and 0.3 indels in relapse. On average, 6.3 SNVs were detected both at the time of initial diagnosis and in relapse. These SNVs were thus defined as leukemia specific. Further to SNVs, we have also estimated the frequency of copy number variations (CNV) at low resolution. Apart from the deletions resulting from T-cell receptor rearrangement, we identified on average for each patient 0.7 copy number gains and 2.2 copy number losses at the time of initial diagnosis and 0.5 copy number gains and 2.4 copy number losses in relapse. We detected 24/27 copy number alterations both in initial diagnosis and in relapse. The most common CNV detected was the CDKN2A/B deletion on chromosome 9p. Nine genes were recurrently mutated in 2 or more patients thus indicating the functional leukemogenic potential of these SNVs in T-ALL. These recurrent mutations included known oncogenes (Notch1), tumor suppressor genes (FBXW7, PHF6, WT1) and genes conferring drug resistance (NT5C2). In several patients one gene (such as Notch 1, PHF6, WT1) carried different mutations either at the time of initial diagnosis and or in relapse, indicating that the major leukemic clone had been eradicated by primary treatment, but that a minor clone had persisted and expanded during relapse. The types of mutations did not differ significantly between mutations that were either already present at diagnosis or those that were newly acquired in relapse, indicating that the treatment did not cause specific genomic damage. We will further characterize the clonal evolution of T-ALL into relapse by targeted re-sequencing at high depth of genes with either relapse specific or initial-disease specific mutations. In conclusion, T-ALL relapse differs from primary disease by a higher number of leukemogenic SNVs without gross genomic instability resulting in large CNVs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4385-4385
Author(s):  
Hideki Muramatsu ◽  
Yusuke Okuno ◽  
Kenichi Yoshida ◽  
Sayoko Doisaki ◽  
Asahito Hama ◽  
...  

Abstract Introduction: Congenital bone marrow failure syndromes (CBMFSs) are a heterogeneous class of diseases with overlapping phenotypes. Therefore, a precise and comprehensive genetic diagnostic system is strongly warranted to arrive at appropriate clinical decisions to avoid ineffective therapies and/or lethal complications of allogeneic hematopoietic stem cell transplantation. However, a large panel of newly identified causative genes of CBMFSs have been identified in recent years; therefore, it is virtually impossible to establish a routine genetic diagnostic test using conventional Sanger sequencing. Whole-exome sequencing (WES) is a promising solution for the diagnosis of inherited diseases because it tests virtually all genes simultaneously. For the introduction of WES into clinical practice, it is necessary to clarify whether this technique has superior diagnostic efficacy to conventional clinical genetic tests. Methods: We performed WES in 250 patients with CBMFSs lacking genetic diagnoses. Exome capture was performed using the SureSelect® Human All Exon V3–5 kit (Agilent Technologies, Santa Clara, CA, USA), which covers all known coding exons, followed by massively parallel sequencing using the HiSeq 2000 Sequencing System (Illumina, San Diego, CA, USA). Our established pipeline for WES (genomon: http://genomon.hgc.jp/exome/) detected >20,000 candidate variants per patient. Diagnoses were based on variants of 130 genes with pathogenicities confirmed by published studies. Results: Genetic diagnoses were possible in 68 patients (27%). The best efficacy was achieved in patients with Fanconi anemia [35/73, 48%; FANCG (n = 17), FANCA (n = 14), FANCB (n = 1), FANCF (n = 1), SLX4 (n = 1), and BRCA2 (n = 1)], although Sanger sequencing was not applied because of the large sizes of its causative genes. Encouraging results were obtained in patients with Diamond–Blackfan anemia [11/ 61, 18%; RPS26 (n = 3), RPS7 (n = 2), RPS19 (n = 2), RPL5 (n = 2), RPL35A (n = 1), and RPL11 (n = 1)] and dyskeratosis congenita [7/29, 24%; TERT (n = 3), TINF2 (n = 2), and DKC1 (n = 2)]. Five genetic diagnoses (7%) were inconsistent with clinical diagnoses, possibly because of overlapping disease phenotypes. Conclusion: Relative to conventional genetic testing, WES was found to be effective for the diagnoses of CBMFSs. Furthermore, the efficacy of WES will increase as our knowledge of gene mutations expands. In conclusion, the use of WES in clinical practice is warranted. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Go Hun Seo ◽  
Taeho Kim ◽  
Jung-young Park ◽  
Jungsul Lee ◽  
Sehwan Kim ◽  
...  

AbstractPurposeEVIDENCE, an automated interpretation system, has been developed to facilitate the entire process of whole exome sequencing (WES) analyses. This study investigated the diagnostic yield of EVIDENCE in patients suspected genetic disorders.MethodsDNA from 330 probands (age range, 0–68 years) with suspected genetic disorders were subjected to WES. Candidate variants were identified by EVIDENCE and confirmed by testing family members and/or clinical reassessments.ResultsThe average number of overlapping organ categories per patient was 4.5 ± 5.0. EVIDENCE reported a total 244 variants in 215 (65.1%) of the 330 probands. After clinical reassessment and/or family member testing, 196 variants were identified in 171 probands (51.8%), including 115 novel variants. These variants were confirmed as being responsible for 146 genetic disorders. One hundred-seven (54.6%) of the 196 variants were categorized as pathogenic or likely pathogenic before, and 146 (74.6%) after, clinical assessment and/or family member testing. Factors associated with a variant being confirmed as causative include rules, such as PVS1, PS1, PM1, PM5, and PP5, and similar symptom scores between that variant and a patient’s phenotype.ConclusionThis new, automated variant interpretation system facilitated the diagnosis of various genetic diseases with a 51% improvement in diagnostic yield.


2021 ◽  
Vol 17 (1) ◽  
pp. 29-37
Author(s):  
E. S. Striukova ◽  
E. V. Shakhtshneider ◽  
D. E. Ivanoshchuk ◽  
Yu. I. Ragino ◽  
Ya. V. Polonskaya ◽  
...  

Factor V, encoded by the F5 gene, is a procoagulant blood clotting factor that increases the production of thrombin, the central enzyme that converts fibrinogen to fibrin, which leads to the formation of a blood clot. The F5 gene is localized to 1q24.2 chromosome and consists of 25 exons. There are various mutations in the F5 gene that lead to resistance of activated protein C (APC) (elimination of the APС cleavage site in factor V and factor Va), which can lead to arterial and venous thrombosis. The aim of the present study was to analyze variants of the F5 gene in patients diagnosed with coronary atherosclerosis without acute coronary syndrome with stable functional class II–IV angina pectoris, confirmed by coronary angiography data, using the method of whole exome sequencing.Material and methods. The study was conducted in the framework of the Program of joint research work IIPM — branch of the ICG SB RAS and the FSBI «Research Institute of Circulation Pathology named after E.N. Meshalkin» Ministry of Health of Russian Federation. The study included 30 men aged 40–70 years with coronary angiography-­verified coronary atherosclerosis, without ACS, with stable angina pectoris of the II–IV FC. Patients were admitted for coronary bypass surgery, and endarteriaectomy from the coronary artery (s) was performed during the operation according to intraoperative indications. Whole exome sequencing (SureSelectXT Human All Exon v.6+UTR) was carried out on an Illumina NextSeq 500 instrument (USA).Results. In 30 patients, 29 single-­nucleotide variants were found in the F5 gene. In patients with coronary atherosclerosis, rs9332701 of the F5 gene is 3.33 times more common, and rs6027 is 1.67 times more common than in the population. And rs184663825 was found in 3.33% of cases, while its occurrence in the population is 0.05%. For variants rs6034 and rs144979314, a possible damaging effect on the protein product is shown.Conclusion. The single-­nucleotide variants rs9332701, rs6027, rs184663825, rs6034, rs144979314 of the F5 gene are of interest for inclusion in the genetic panels for the analysis of risk factors for the development of acute coronary syndrome.


2020 ◽  
Author(s):  
Zhen Zhang ◽  
Yi-shuang Xiao ◽  
Hong-chao Jiang ◽  
Ru Sheng ◽  
Li Tang ◽  
...  

Abstract Background : Familial exudative vitreoretinopathy (FEVR) is a rare inherited retinal disorder characterized by the failure of peripheral retinal vascularization at birth. FEVR can cause further pathological changes, such as neovascularization, exudation, haemorrhage, and retinal detachment, in turn. The molecular diagnosis enables a deeper understanding of this disease, so the differentiation of FEVR is important for the accuracy of genetic counselling. However, to date, only six genes have been identified as being responsible for this disease. Methods : Without a known FEVR gene mutation, six families were enrolled in our study between 2016 and 2017 from the clinical practices of ophthalmologists. The referring physician made a diagnosis for FEVR probands, and clinical data and DNA were collected from each participant. Whole-exome sequencing was used to detect the mutations present in the probands. The raw reads were obtained from Illumina Miseq. Then, an in-house bioinformatics pipeline was performed to detect both single nucleotide variants (SNVs) and small insertions/deletions (InDels). The pathogenic mutations were identified with stringent criteria and were further confirmed by conventional methods and cosegregation in families. Results : Using this approach, bioinformatic predictions showed that six mutations were found in our study: three mutations in the known genes of ZNF408, LRP5 and KIF11 and three mutations in the newly identified genes NR2E3,KRT3 and FOXL2 .To test the hypothesis that cases of FEVR are caused by NR2E3, KRT3 and FOXL2 , probands who were diagnosed as FEVR by a physician using wide-field fluorescein angiography were found to not have any mutations in any of the six known FEVR genes. Compared with previous reports, mutations in NR2E3, KRT3 and FOXL2 are believed to cause a broader spectrum of ocular disease. The NR2E3,KRT3 and FOXL2 genes likely play a role in retinal vascular development. Conclusions : This report is the first to describe FEVR mutations in Yunnan province children with FEVR. This study would provide information on the genetic forms of the disease and direct counselling by analysing the genetic testing and genotype-phenotype interaction.


2021 ◽  
Vol 15 (6) ◽  
pp. e0009507
Author(s):  
Victor Borda ◽  
Ronaldo da Silva Francisco Junior ◽  
Joseane B. Carvalho ◽  
Guilherme L. Morais ◽  
Átila Duque Rossi ◽  
...  

Congenital Zika Syndrome (CZS) is a critical illness with a wide range of severity caused by Zika virus (ZIKV) infection during pregnancy. Life-threatening neurodevelopmental dysfunctions are among the most common phenotypes observed in affected newborns. Risk factors that contribute to susceptibility and response to ZIKV infection may be related to the virus itself, the environment, and maternal genetic background. Nevertheless, the newborn’s genetic contribution to the critical illness is still not elucidated. Here, we aimed to identify possible genetic variants as well as relevant biological pathways that might be associated with CZS phenotypes. For this purpose, we performed a whole-exome sequencing in 40 children born to women with confirmed exposure to ZIKV during pregnancy. We investigated the occurrence of rare harmful single-nucleotide variants (SNVs) possibly associated with inborn errors in genes ontologically related to CZS phenotypes. Moreover, an exome-wide association analysis was also performed using a case-control design (29 CZS cases and 11 controls), for both common and rare variants. Five out of the 29 CZS patients harbored known pathogenic variants likely to contribute to mild to severe manifestations observed. Approximately, 30% of affected individuals carried at least one pathogenic or likely pathogenic SNV in genes candidates to play a role in CZS. Our common variant association analysis detected a suggestive protective effect of the rs2076469 in DISP3 gene (p-value: 1.39 x 10−5). The IL12RB2 gene (p-value: 2.18x10-11) also showed an unusual distribution of nonsynonymous rare SNVs in control samples. Finally, genes harboring harmful variants are involved in processes related to CZS phenotypes such as neurological development and immunity. Therefore, both rare and common variations may be likely to contribute as the underlying genetic cause of CZS susceptibility. The variations and pathways identified in this study may also have implications for the development of therapeutic strategies in the future.


Sign in / Sign up

Export Citation Format

Share Document