scholarly journals Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling

2021 ◽  
Vol 11 ◽  
Author(s):  
Shengqi Wang ◽  
Xu Chang ◽  
Juping Zhang ◽  
Jing Li ◽  
Neng Wang ◽  
...  

Breast cancer remains the most common malignancy and the leading causality of cancer-associated mortality among women worldwide. With proven efficacy, Oldenlandia diffusa has been extensively applied in breast cancer treatment in Traditional Chinese Medicine (TCM) for thousands of years. However, the bioactive compounds of Oldenlandia diffusa accounting for its anti-breast cancer activity and the underlying biological mechanisms remain to be uncovered. Herein, bioactivity-guided fractionation suggested ursolic acid as the strongest anti-breast cancer compound in Oldenlandia diffusa. Ursolic acid treatment dramatically suppressed the proliferation and promoted mitochondrial-mediated apoptosis in breast cancer cells while brought little cytotoxicities in nonmalignant mammary epithelial cells in vitro. Meanwhile, ursolic acid dramatically impaired both the glycolytic metabolism and mitochondrial respiration function of breast cancer cells. Further investigations demonstrated that ursolic acid may impair the glycolytic metabolism of breast cancer cells by activating Caveolin-1 (Cav-1) signaling, as Cav-1 knockdown could partially abrogate the suppressive effect of ursolic acid on that. Mechanistically, ursolic acid could activate SP1-mediated CAV1 transcription by promoting SP1 expression as well as its binding with CAV1 promoter region. More meaningfully, ursolic acid administration could dramatically suppress the growth and metastasis of breast cancer in both the zebrafish and mouse xenotransplantation models of breast cancer in vivo without any detectable hepatotoxicity, nephrotoxicity or hematotoxicity. This study not only provides preclinical evidence supporting the application of ursolic acid as a promising candidate drug for breast cancer treatment but also sheds novel light on Cav-1 as a druggable target for glycolytic modulation of breast cancer.

Author(s):  
Eduardo Ribeiro Almeida ◽  
Helio F. Dos Santos ◽  
Priscila V. S. Z. Capriles

Cisplatin (cddp)-based chemotherapy is one of the most effective therapeutic alternatives for breast cancer treatment, the most common form of cancer, despite the severe side effects related to the high...


2018 ◽  
Vol 47 (6) ◽  
pp. 2199-2215 ◽  
Author(s):  
Jian Hao ◽  
Ziqi Jin ◽  
Hongxu Zhu ◽  
Xiaohui Liu ◽  
Yu Mao ◽  
...  

Background/Aims: The Xi-Huang (XH) formula has been used for breast cancer treatment in traditional Chinese medicine (TCM) since 1740. In this study, we show that, XH extract could suppress the growth of breast cancer cells in vitro and in vivo, and that it preferentially inhibits cell growth of estrogen receptor positive (ER+) breast cancer cells. Presently, little is known about the potential mechanism of XH and our studies aim to elucidate its mechanism in breast cancer treatment. Methods: Network-based systems biology and molecular docking analyses were performed to predict explicit targets of XH and active ingredients in XH. The effects of XH on cell viability, cell cycle, apoptosis in different breast cancer cell lines were analyzed in vitro. A model of transplanted tumors on nude mice was used to study the anticancer effect in vivo. Various techniques, including western blotting, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, co-immunoprecipitation and immunohistochemical were utilized to assess the expression of targets of XH in vitro and in vivo. RNA sequencing (RNA-seq) was performed to study the gene targets of XH. Furthermore, we analyzed of protein-ligand binding reactions by isothermal titration calorimetry (ITC). Results: Using network-based systems biology and molecular docking analyses, we predicted that the major targets of XH were ERα and HSP90. Moreover, we found that, XH mediated its anti-cancer effects by promoting the disassociation of ERα and HSP90, resulting in the degradation of ERα and blockade of transport of ERα to the nucleus. XH also caused the dissociation of ERα and other oncoproteins via binding to HSP90. Some of the active ingredients in XH share a common cyclopentane hydrogen skeleton and were predicted to target ERα based on the structural similarity. Conclusions: XH, which has been used since 1740, has antiestrogenic effects in breast cancer via the targeting of ERα.


2020 ◽  
Author(s):  
yongxia chen ◽  
yunlu jia ◽  
misha mao ◽  
Yifeng Gu ◽  
Chenpu Xu ◽  
...  

Abstract Background Adriamycin (ADM) is currently one of the most effective chemotherapeutic agents in breast cancer treatment. However, growing resistance to ADM can lead to treatment failure and poor outcome. The underlying molecular mechanisms in ADM resistance in breast cancer remains unclear. PLAC8 is reported as a novel highly-conserved protein and functions as an oncogene or tumor suppressor in various tumors. Methods Here, we analyzed the expression profile of PLAC8 in breast cancer tissues and breast cancer cell lines, and explored the correlation of PLAC8 expression levels with patients’ outcomes and ADM response. One ADM resistant MCF-7 breast cancer cell (MCF-7/ADM) and its parental cell was used as in vitro models to identify the underlying mechanism of PLAC8 and ADM resistance. Breast cancer cells were transfected with PLAC8 knockdown and overexpression vectors, and MTT and colony formation assays were performed to test the cell response to ADM. Then, we tested the effect of PLAC8 on autophagy pathway by flow cytometry and immunofluorescence analysis, and the change of main autophagy-correlated factors expressions: LC3 and p62. Next, combining treatment of autophagy inhibitor/inducer and PLAC8 downregulation/upregulation revealed the participation of PLAC8 in autophagy pathway to synergistically regulate ADM resistance in breast cancer. Results Here, higher PLAC8 expression was correlated with poorer outcome and aggressive phenotype in breast cancer, and breast cancer patients with higher PLAC8 expression showed potential ADM resistance. PLAC8 expression level was also significantly elevated in ADM resistant MCF-7 breast cancer cells (MCF-7/ADM), compared to parental MCF-7 cells. In vitro experiments further confirmed that PLAC8 inhibition by siRNA or enforced overexpression by infecting pcDNA3.1(C)-PLAC8 plasmid correspondingly decreased or increased the ADM resistance. Subsequently, we demonstrated that ectopic PLAC8 expression in MCF-7/ADM cell blocked the accumulation of the autophagy-associated protein LC3II, and resulted in cellular accumulation of p62. Rapamycin-triggered autophagy significantly increased cell response to ADM, while the autophagy inhibitor 3-MA enhanced ADM resistance. Actually, 3-MA and PLAC8 could synergistically enhance ADM resistance via blocking the autophagy process. Additionally, the downregulation of p62 by siRNA attenuated the activation of autophagy and PLAC8 expression in breast cancer cells. Conclusion Our findings suggest that PLAC8, through participation of p62, inhibits autophagy and consequently results in ADM resistance in breast cancer. PLAC8/p62/autophagy pathway may act as novel therapeutic targets in breast cancer treatment and has potential clinical application in overcoming ADM resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adrianne Spencer ◽  
Andrew D. Sligar ◽  
Daniel Chavarria ◽  
Jason Lee ◽  
Darshil Choksi ◽  
...  

AbstractPhysical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.


2021 ◽  
Author(s):  
Duo You ◽  
Danfeng Du ◽  
Xueke Zhao ◽  
Xinmin Li ◽  
Minfeng Ying ◽  
...  

Abstract Background: α-ketoglutarate (α-KG) is the substrate to hydoxylate collagen and hypoxia-inducible factor-1α (HIF-1α), which are important for cancer metastasis. Previous studies showed that upregulation of collagen prolyl 4-hydroxylase in breast cancer cells stabilizes HIF-1α via depleting α-KG in breast cancer cells. We propose that mitochondrial malate enzyme 2 (ME2) may also affect HIF-1α via modulating α-KG level in breast cancer cells. Methods: ME2 protein expression was evaluated by immunohistochemistry on 100 breast cancer patients and correlated with clinicopathological indicators. The effect of ME2 knockout on cancer metastasis was evaluated by an orthotopic breast cancer model. The effect of ME2 knockout or knockdown on the levels of α-KG and HIF-1α protein in breast cancer cell lines (4T1 and MDA-MB-231) was determined in vitro and in vivo.Results: The high expression of ME2 was observed in the human breast cancerous tissues compared to the matched precancerous tissues (P=0.000). The breast cancer patients with a high expression of ME2 had an inferior survival than the patients with low expression of ME2 (P=0.019). ME2 high expression in breast cancer tissues was also related with lymph node metastasis (P=0.016), pathological staging (P=0.033) and vascular cancer embolus (P=0.014). In a 4T1 orthotopic breast cancer model, ME2 knockout significantly inhibited lung metastasis. In the tumors formed by ME2 knockout 4T1 cells, α-KG level significantly increased, collagen hydroxylation level did not change significantly, but HIF-1α protein level significantly decreased, in comparison to control. In cell culture, ME2 knockout or knockdown cells demonstrated a significantly higher α-KG level but significantly lower HIF-1α protein level than control cells under hypoxia. Exogenous malate and α-KG exerted similar effect on HIF-1α in breast cancer cells to ME2 knockout or knockdown. Treatment with malate significantly decreased 4T1 breast cancer lung metastasis. ME2 expression was associated with HIF-1α level in human breast cancer samples (P=0.027).Conclusion: We provide evidence that upregulation of ME2 is associated with a poor prognosis of breast cancer patients and propose a mechanistic understanding of a link between ME2 and breast cancer metastasis.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuan-Chiang Chung ◽  
Ching-Ming Chang ◽  
Wan-Chen Wei ◽  
Ting-Wei Chang ◽  
King-Jen Chang ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e13002-e13002
Author(s):  
Yinghuan Cen ◽  
Chang Gong ◽  
Jun Li ◽  
Gehao Liang ◽  
Zihao Liu ◽  
...  

e13002 Background: We previously demonstrated that BRMS1L (breast cancer metastasis suppressor 1 like) suppresses breast cancer metastasis through HDAC1 recruitment and histone H3K9 deacetylation at the promoter of FZD10, a receptor for Wnt signaling. It is still unclear whether BRMS1L regulates organ-specific metastases, such as bone metastasis, the most prevalent metastatic site of breast cancer. Methods: Examination of the expression of BRMS1L in primary tumors, bone metastatic and other metastatic tissues from breast cancer patients was implemented using qRT-PCR and immunohistochemistry staining. To investigate the mechanism by which BRMS1L drives breast cancer bone metastasis, we tested the mRNA expression by qRT-PCR of a set of potential bone related genes (BRGs) based on PubMed database in MDA-MB-231 cells over expressing BRMS1L and MCF-7 cells knocking-down BRMS1L, and detected the expression of CXCR4 in these established cells by western blot. Transwell assays were performed to assess the migration abilities of breast cancer cells towards osteoblasts. ChIP (Chromatin Immuno-Precipitation) were employed to test the interaction between BRMS1L and CXCR4. Results: At both mRNA and protein levels, the expression of BRMS1L was significantly lower in bone metastatic sites than that in primary cancer tissues and other metastatic sites of breast cancer patients. CXCR4 was screened out in a set of BRGs and negatively correlated with the expression of BRMS1L in breast cancer cell lines. BRMS1L inhibited the migration of breast cancer cells towards osteoblasts through CXCL12/CXCR4 axis. In the presence of TSA treatment, breast cancer cell lines showed an increased expression of CXCR4 in a TSA concentration-dependent manner. In addition, ChIP assays verified that BRMS1L directly bound to the promoter region of CXCR4 and inhibited its transcription through promoter histone deacetylation. Conclusions: BRMS1L mediates the migration abilities of breast cancer cells to bone microenvironment via targeting CXCR4 and contributes to bone metastasis of breast cancer cells. Thus, BRMS1L may be a potential biomarker for predicting bone metastasis in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document