scholarly journals Tracking the Corticospinal Tract in Patients With High-Grade Glioma: Clinical Evaluation of Multi-Level Fiber Tracking and Comparison to Conventional Deterministic Approaches

2021 ◽  
Vol 11 ◽  
Author(s):  
Andrey Zhylka ◽  
Nico Sollmann ◽  
Florian Kofler ◽  
Ahmed Radwan ◽  
Alberto De Luca ◽  
...  

While the diagnosis of high-grade glioma (HGG) is still associated with a considerably poor prognosis, neurosurgical tumor resection provides an opportunity for prolonged survival and improved quality of life for affected patients. However, successful tumor resection is dependent on a proper surgical planning to avoid surgery-induced functional deficits whilst achieving a maximum extent of resection (EOR). With diffusion magnetic resonance imaging (MRI) providing insight into individual white matter neuroanatomy, the challenge remains to disentangle that information as correctly and as completely as possible. In particular, due to the lack of sensitivity and accuracy, the clinical value of widely used diffusion tensor imaging (DTI)-based tractography is increasingly questioned. We evaluated whether the recently developed multi-level fiber tracking (MLFT) technique can improve tractography of the corticospinal tract (CST) in patients with motor-eloquent HGGs. Forty patients with therapy-naïve HGGs (mean age: 62.6 ± 13.4 years, 57.5% males) and preoperative diffusion MRI [repetition time (TR)/echo time (TE): 5000/78 ms, voxel size: 2x2x2 mm3, one volume at b=0 s/mm2, 32 volumes at b=1000 s/mm2] underwent reconstruction of the CST of the tumor-affected and unaffected hemispheres using MLFT in addition to deterministic DTI-based and deterministic constrained spherical deconvolution (CSD)-based fiber tractography. The brain stem was used as a seeding region, with a motor cortex mask serving as a target region for MLFT and a region of interest (ROI) for the other two algorithms. Application of the MLFT method substantially improved bundle reconstruction, leading to CST bundles with higher radial extent compared to the two other algorithms (delineation of CST fanning with a wider range; median radial extent for tumor-affected vs. unaffected hemisphere – DTI: 19.46° vs. 18.99°, p=0.8931; CSD: 30.54° vs. 27.63°, p=0.0546; MLFT: 81.17° vs. 74.59°, p=0.0134). In addition, reconstructions by MLFT and CSD-based tractography nearly completely included respective bundles derived from DTI-based tractography, which was however favorable for MLFT compared to CSD-based tractography (median coverage of the DTI-based CST for affected vs. unaffected hemispheres – CSD: 68.16% vs. 77.59%, p=0.0075; MLFT: 93.09% vs. 95.49%; p=0.0046). Thus, a more complete picture of the CST in patients with motor-eloquent HGGs might be achieved based on routinely acquired diffusion MRI data using MLFT.

Neurosurgery ◽  
2021 ◽  
Author(s):  
Fraser Henderson Jr ◽  
Drew Parker ◽  
Anupa A Vijayakumari ◽  
Mark Elliott ◽  
Timothy Lucas ◽  
...  

Abstract BACKGROUND A limitation of diffusion tensor imaging (DTI)-based tractography is peritumoral edema that confounds traditional diffusion-based magnetic resonance metrics. OBJECTIVE To augment fiber-tracking through peritumoral regions by performing novel edema correction on clinically feasible DTI acquisitions and assess the accuracy of the fiber-tracks using intraoperative stimulation mapping (ISM), task-based functional magnetic resonance imaging (fMRI) activation maps, and postoperative follow-up as reference standards. METHODS Edema correction, using our bi-compartment free water modeling algorithm (FERNET), was performed on clinically acquired DTI data from a cohort of 10 patients presenting with suspected high-grade glioma and peritumoral edema in proximity to and/or infiltrating language or motor pathways. Deterministic fiber-tracking was then performed on the corrected and uncorrected DTI to identify tracts pertaining to the eloquent region involved (language or motor). Tracking results were compared visually and quantitatively using mean fiber count, voxel count, and mean fiber length. The tracts through the edematous region were verified based on overlay with the corresponding motor or language task-based fMRI activation maps and intraoperative ISM points, as well as at time points after surgery when peritumoral edema had subsided. RESULTS Volume and number of fibers increased with application of edema correction; concordantly, mean fractional anisotropy decreased. Overlay with functional activation maps and ISM-verified eloquence of the increased fibers. Comparison with postsurgical follow-up scans with lower edema further confirmed the accuracy of the tracts. CONCLUSION This method of edema correction can be applied to standard clinical DTI to improve visualization of motor and language tracts in patients with glioma-associated peritumoral edema.


Neurosurgery ◽  
2011 ◽  
Vol 70 (4) ◽  
pp. 911-920 ◽  
Author(s):  
Daniela Kuhnt ◽  
Miriam H. A. Bauer ◽  
Andreas Becker ◽  
Dorit Merhof ◽  
Amir Zolal ◽  
...  

Abstract BACKGROUND: For neuroepithelial tumors, the surgical goal is maximum resection with preservation of neurological function. This is contributed to by intraoperative magnetic resonance imaging (iMRI) combined with multimodal navigation. OBJECTIVE: We evaluated the contribution of diffusion tensor imaging (DTI)-based fiber tracking of language pathways with 2 different algorithms (tensor deflection, connectivity analysis [CA]) integrated in the navigation on the surgical outcome. METHODS: We evaluated 32 patients with neuroepithelial tumors who underwent surgery with DTI-based fiber tracking of language pathways integrated in neuronavigation. The tensor deflection algorithm was routinely used and its results intraoperatively displayed in all cases. The CA algorithm was furthermore evaluated in 23 cases. Volumetric assessment was performed in pre- and intraoperative MR images. To evaluate the benefit of fiber tractography, language deficits were evaluated pre- and postoperatively and compared with the volumetric analysis. RESULTS: Final gross-total resection was performed in 40.6% of patients. Absolute tumor volume was reduced from 55.33 ± 63.77 cm3 to 20.61 ± 21.67 cm3 in first iMRI resection control, to finally 11.56 ± 21.92 cm3 (P < .01). Fiber tracking of the 2 algorithms showed a deviation of the displayed 3D objects by <5 mm. In long-term follow-up only 1 patient (3.1%) had a persistent language deficit. CONCLUSION: Intraoperative visualization of language-related cortical areas and the connecting pathways with DTI-based fiber tracking can be successfully performed and integrated in the navigation system. In a setting of intraoperative high-field MRI this contributes to maximum tumor resection with low postoperative morbidity.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi69-vi69
Author(s):  
James Liu ◽  
Chibueze D Nwagwu ◽  
Amanda V Immidisetti ◽  
Gabriela Bukanowska ◽  
Anne-Marie Carbonell ◽  
...  

Abstract BACKGROUND OS2966 is a first-in-class, humanized and deimmunized monoclonal antibody which antagonizes CD29/β1integrin, a mechanosignaling receptor prominently upregulated in glioblastoma. Preclinical studies in mice and non-human primates have demonstrated safety and encouraging efficacy. A two-part, ascending concentration, phase I clinical trial was therefore initiated to evaluate the safety and feasibility of delivering OS2966 directly to the site of disease via convection-enhanced delivery (CED) in recurrent high-grade glioma patients. METHODS This study has a 2-part design: In part 1, patients undergo stereotactic tumor biopsy followed by placement of a multiport CED catheter for delivery of OS2966 to the bulk contrast enhancing tumor. Subsequently, patients undergo a clinically-indicated tumor resection followed by placement of two CED catheters and delivery of OS2966 to the surrounding tumor-infiltrated brain. A unique concentration-based accelerated titration design is utilized for dose escalation. Given availability of pre and post infusion samples, pharmacodynamic data will be analyzed to explore mechanism of action of OS2966. RESULTS Two subjects have been treated at two corresponding dose levels (0.2mg/mL and 0.4 mg/mL). No dose-limiting toxicity or unexpected safety issues have been identified. To date, reported adverse events were mild (i.e., grade 1) and consistent with underlying disease and surgical procedures. No adverse events were attributed to OS2966 or CED catheter placement. Further, no clinically significant changes from baseline neurological exam have been noted for either patient through initial follow-up. Maximal tumor coverage and concomitant gross total resection were achieved for both patients. Tumor volume measured 1.63 cm3 and 16 cm3 for Patient 1 and 2 respectively with an intratumoral Vd/Vi ratio of 1.3. and 0.94. Pharmacodynamic analysis via tissue-level biomarkers is ongoing and will be presented. CONCLUSION Initial data demonstrates the safety and feasibility of direct intracranial delivery of OS2966.


2021 ◽  
Author(s):  
Dexiang Wang ◽  
Jia Dong ◽  
Min Zeng ◽  
Xiaoyuan Liu ◽  
Xiang Yan ◽  
...  

Abstract Background High-grade glioma (HGG) is the most malignant brain tumor with poor outcome. Whether anesthetic methods have impact on the outcome of these patients is still unknown. Retrospective study has found that there is no difference between two anesthesia methods on the overall survival (OS), however, intravenous anesthesia with propofol might be beneficial in subgroup patients of KPS<80. Further prospective studies are needed to evaluate the results.Methods This is a single-centered, randomized controlled, parallel group trial. 196 patients with primary HGG for tumor resection will be randomly assigned to receive either the intravenous anesthesia with propofol or inhalation anesthesia with sevoflurane. The primary outcome is the OS within 18 months. Secondary outcomes include progression-free survival (PFS), the numerical rating scale (NRS) of pain intensity and sleep quality, the postoperative encephaloedema volume, complications, the length and cost effectiveness of hospital stay of the patients.Discussion This is a randomized controlled trial to compare the effect of intravenous or inhalation anesthesia maintenance on the outcome of supratentorial HGG patients.The results will help to optimizing the anesthesia methods in these patients.Trial registration: ClinicalTrials.gov (ID: NCT02756312). Registered on 27 April 2020 https://register.clinicaltrials.gov/


2015 ◽  
pp. nov113 ◽  
Author(s):  
Kumar Abhinav ◽  
Fang-Cheng Yeh ◽  
Alireza Mansouri ◽  
Gelareh Zadeh ◽  
Juan C. Fernandez-Miranda

2022 ◽  
Vol 6 (1) ◽  
pp. V5

Maximal safe resection is the primary goal of glioma surgery. By incorporating improved intraoperative visualization with the 3D exoscope combined with 5-ALA fluorescence, in addition to neuronavigation and diffusion tensor imaging (DTI) fiber tracking, the safety of resection of tumors in eloquent brain regions can be maximized. This video highlights some of the various intraoperative adjuncts used in brain tumor surgery for high-grade glioma. In this case, the authors highlight the resection of a left posterior temporal lobe high-grade glioma in a 33-year-old patient, who initially presented with seizures, word-finding difficulty, and right-sided weakness. They demonstrate the multiple surgical adjuncts used both before and during surgical resection, and how multiple adjuncts can be effectively orchestrated to make surgery in eloquent brain areas safer for patients. Patient consent was obtained for publication. The video can be found here: https://stream.cadmore.media/r10.3171/2021.10.FOCVID21174


Author(s):  
Daria Krivosheya ◽  
Ganesh Rao ◽  
Sudhakar Tummala ◽  
Vinodh Kumar ◽  
Dima Suki ◽  
...  

Abstract Introduction Preserving the integrity of the corticospinal tract (CST) while maximizing the extent of tumor resection is one of the key principles of brain tumor surgery to prevent new neurologic deficits. Our goal was to determine the impact of the use of perioperative diffusion tensor imaging (DTI) fiber-tracking protocols for location of the CSTs, in conjunction with intraoperative direct electrical stimulation (DES) on patient neurologic outcomes. The role of combining DES and CST shift in intraoperative magnetic resonance imaging (iMRI) to enhance extent of resection (EOR) has not been studied previously. Methods A total of 53 patients underwent resection of tumors adjacent to the motor gyrus and the underlying CST between June 5, 2009, and April 16, 2013. All cases were performed in the iMRI (BrainSuite 1.5 T). Preoperative DTI mapping and intraoperative cortical and subcortical DES including postoperative DTI mapping were performed in all patients. There were 32 men and 21 women with 40 high-grade gliomas (76%), 4 low-grade gliomas (8%), and 9 (17%) metastases. Thirty-four patients (64%) were newly diagnosed, and 19 (36%) had a previous resection. There were 31 (59%) right-sided and 22 (42%) left-sided tumors. Eighteen patients (34%) had a re-resection after the first intraoperative scan. Most patients had motor-only mapping, and one patient had both speech and motor mapping. Relative to the resection margin, the CST after the first iMRI was designated as having an outward shift (OS), inward shift (IS), or no shift (NS). Results A gross total resection (GTR) was achieved in 41 patients (77%), subtotal resection in 4 (7.5%), and a partial resection in 8 (15%). Eighteen patients had a re-resection, and the mean EOR increased from 84% to 95% (p = 0.002). Of the 18 patients, 7 had an IS, 8 an OS, and in 3 NS was noted. More patients in the OS group had a GTR compared with the IS or NS groups (p = 0.004). Patients were divided into four groups based on the proximity of the tumor to the CST as measured from the preoperative scan. Group 1 (32%) included patients whose tumors were 0 to 5 mm from the CST based on preoperative scans; group 2 (28%), 6 to 10 mm; group 3 (13%), 11 to 15 mm; and group 4 (26%), 16 to 20 mm, respectively. Patients in group 4 had fewer neurologic complications compared with other groups at 1 and 3 months postoperatively (p = 0.001 and p = 0.007, respectively) despite achieving a similar degree of resection (p = 0.61). Furthermore, the current of intraoperative DES was correlated to the distance of the tumor to the CST, and the regression equation showed a close linear relationship between the two parameters. Conclusions Combining information about intraoperative CST and DES in the iMRI can enhance resection in brain tumors (77% had a GTR). The relative relationship between the positions of the CST to the resection cavity can be a dynamic process that could further influence the surgeon's decision about the stimulation parameters and EOR. Also, the patients with an OS of the CST relative to the resection cavity had a GTR comparable with the other groups.


Sign in / Sign up

Export Citation Format

Share Document