scholarly journals Endoplasmic Reticulum Adaptation and Autophagic Competence Shape Response to Fluid Shear Stress in T24 Bladder Cancer Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgia Del Favero ◽  
Michael Zeugswetter ◽  
Endre Kiss ◽  
Doris Marko

Accumulation of xenobiotics and waste metabolites in the urinary bladder is constantly accompanied by shear stress originating from the movement of the luminal fluids. Hence, both chemical and physical cues constantly modulate the cellular response in health and disease. In line, bladder cells have to maintain elevated mechanosensory competence together with chemical stress response adaptation potential. However, much of the molecular mechanisms sustaining this plasticity is currently unknown. Taking this as a starting point, we investigated the response of T24 urinary bladder cancer cells to shear stress comparing morphology to functional performance. T24 cells responded to the shear stress protocol (flow speed of 0.03 ml/min, 3 h) by significantly increasing their surface area. When exposed to deoxynivalenol-3-sulfate (DON-3-Sulf), bladder cells increased this response in a concentration-dependent manner (0.1–1 µM). DON-3-Sulf is a urinary metabolite of a very common food contaminant mycotoxin (deoxynivalenol, DON) and was already described to enhance proliferation of cancer cells. Incubation with DON-3-Sulf also caused the enlargement of the endoplasmic reticulum (ER), decreased the lysosomal movement, and increased the formation of actin stress fibers. Similar remodeling of the endoplasmic reticulum and area spread after shear stress were observed upon incubation with the autophagy activator rapamycin (1–100 nM). Performance of experiments in the presence of chloroquine (chloroquine, 30 μM) further contributed to shed light on the mechanistic link between adaptation to the biomechanical stimulation and ER stress response. At the molecular level, we observed that ER reshaping was linked to actin organization, with the two components mutually regulating each other. Indeed, we identified in the ER stress–cytoskeletal rearrangement an important axis defining the physical/chemical response potential of bladder cells and created a workflow for further investigation of urinary metabolites, food constituents, and contaminants, as well as for pharmacological profiling.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Kloskowski ◽  
K. Szeliski ◽  
K. Krzeszowiak ◽  
Z. Fekner ◽  
Ł. Kazimierski ◽  
...  

AbstractMumio (Shilajit) is a traditional medicinal drug known and used for hundreds of years. Bladder cancer is one of the most common cancer types and better treatments are needed. This study analysed the in vitro effect of Mumio on urinary bladder cancer cells (T24 and 5637) in comparison to normal uroepithelial cells (SV-HUC1). Cytotoxicity of Mumio was analysed in these cell lines via MTT and real-time cell growth assays as well via the assessment of the cytoskeleton, apoptosis, and cell cycle. Mumio affected the viability of both cell types in a time and concentration dependent manner. We observed a selectivity of Mumio against cancer cells. Cell cycle and apoptosis analysis showed that Mumio inhibited G0/G1 or S phase cell cycle, which in turn induced apoptosis. Our results showed that Mumio was significantly more cytotoxic to urinary bladder cancer cells than to normal cells. These results are promising and indicate Mumio as a great candidate for urinary bladder cancer treatment and further investigations should be performed.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2881 ◽  
Author(s):  
Yih-Gang Goan ◽  
Wen-Tung Wu ◽  
Chih-I Liu ◽  
Choo-Aun Neoh ◽  
Yu-Jen Wu

Nobiletin (NOB) is a polymethoxylated flavonoid isolated from citrus fruit peel that has been shown to possess anti-tumor, antithrombotic, antifungal, anti-inflammatory and anti-atherosclerotic activities. The main purpose of this study was to explore the potential of using NOB to induce apoptosis in human bladder cancer cells and study the underlying mechanism. Using an MTT assay, agarose gel electrophoresis, a wound-healing assay, flow cytometry, and western blot analysis, this study investigated the signaling pathways involved in NOB-induced apoptosis in BFTC human bladder cancer cells. Our results showed that NOB at concentrations of 60, 80, and 100 μM inhibited cell growth by 42%, 62%, and 80%, respectively. Cells treated with 60 μM NOB demonstrated increased DNA fragmentation, and flow cytometry analysis confirmed that the treatment caused late apoptotic cell death. Western blot analysis showed that mitochondrial dysfunction occurred in NOB-treated BFTC cells, leading to cytochrome C release into cytosol, activation of pro-apoptotic proteins (caspase-3, caspase-9, Bad, and Bax), and inhibition of anti-apoptotic proteins (Mcl-1, Bcl-xl, and Bcl-2). NOB-induced apoptosis was also mediated by regulating endoplasmic reticulum stress via the PERK/elF2α/ATF4/CHOP pathway, and downregulating the PI3K/AKT/mTOR pathway. Our results suggested that the cytotoxic and apoptotic effects of NOB on bladder cancer cells are associated with endoplasmic reticulum stress and mitochondrial dysfunction.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 287 ◽  
Author(s):  
Yu-Jen Wu ◽  
Tzu-Rong Su ◽  
Guo-Fong Dai ◽  
Jui-Hsin Su ◽  
Chih-I Liu

Flaccidoxide-13-acetate, an active compound isolated from cultured-type soft coral Sinularia gibberosa, has been shown to have inhibitory effects against invasion and cell migration of RT4 and T24 human bladder cancer cells. In our study, we used an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation assay, and flow cytometry to determine the mechanisms of the anti-tumor effect of flaccidoxide-13-acetate. The MTT and colony formation assays showed that the cytotoxic effect of flaccidoxide-13-acetate on T24 and RT4 cells was dose-dependent, and the number of colonies formed in the culture was reduced with increasing flaccidoxide-13-acetate concentration. Flow cytometry analysis revealed that flaccidoxide-13-acetate induced late apoptotic events in both cell lines. Additionally, we found that flaccidoxide-13-acetate treatment upregulated the expressions of cleaved caspase 3, cleaved caspase 9, Bax, and Bad, and down-regulated the expressions of Bcl-2, p-Bad, Bcl-x1, and Mcl-1. The results indicated that apoptotic events were mediated by mitochondrial dysfunction via the caspase-dependent pathway. Flaccidoxide-13-acetate also provoked endoplasmic reticulum (ER) stress and led to activation of the PERK-eIF2α-ATF6-CHOP pathway. Moreover, we examined the PI3K/AKT signal pathway, and found that the expressions of phosphorylated PI3K (p-PI3K) and AKT (p-AKT) were decreased with flaccidoxide-13-acetate concentrations. On the other hand, our results showed that the phosphorylated JNK and p38 were obviously activated. The results support the idea that flaccidoxide-13-acetate-induced apoptosis is mediated by mitochondrial dysfunction, ER stress, and activation of both the p38 and JNK pathways, and also relies on inhibition of PI3K/AKT signaling. These findings imply that flaccidoxide-13-acetate has potential in the development of chemotherapeutic agents for human bladder cancer.


2002 ◽  
Vol 30 (2) ◽  
pp. 102-111 ◽  
Author(s):  
Takeo Nomura ◽  
Hideyuki Yamamoto ◽  
Hiromitsu Mimata ◽  
Miki Shitashige ◽  
Futoshi Shibasaki ◽  
...  

2017 ◽  
Vol 51 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Ming Chen ◽  
Jian-Min Lv ◽  
Jian-Qing Ye ◽  
Xin-Gang Cui ◽  
Fa-Jun Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document