scholarly journals A Review on Drug Delivery System for Tumor Therapy

2021 ◽  
Vol 12 ◽  
Author(s):  
Guoxiang Liu ◽  
Lina Yang ◽  
Guang Chen ◽  
Fenghua Xu ◽  
Fanghao Yang ◽  
...  

In recent years, with the development of nanomaterials, the research of drug delivery systems has become a new field of cancer therapy. Compared with conventional antitumor drugs, drug delivery systems such as drug nanoparticles (NPs) are expected to have more advantages in antineoplastic effects, including easy preparation, high efficiency, low toxicity, especially active tumor-targeting ability. Drug delivery systems are usually composed of delivery carriers, antitumor drugs, and even target molecules. At present, there are few comprehensive reports on a summary of drug delivery systems applied for tumor therapy. This review introduces the preparation, characteristics, and applications of several common delivery carriers and expounds the antitumor mechanism of different antitumor drugs in delivery carriers in detail which provides a more theoretical basis for clinical application of personalized cancer nanomedicine in the future.

2016 ◽  
Vol 22 (19) ◽  
pp. 2808-2820 ◽  
Author(s):  
Houman Alimoradi ◽  
Siddharth S. Matikonda ◽  
Allan B. Gamble ◽  
Gregory I. Giles ◽  
Khaled Greish

2019 ◽  
Vol 18 (15) ◽  
pp. 2078-2092 ◽  
Author(s):  
Mala Sharma ◽  
Chitranshu Pandey ◽  
Neha Sharma ◽  
Mohammad A. Kamal ◽  
Usman Sayeed ◽  
...  

Background: Nanotechnology pictures a breakthrough in the domain of cancer therapy owing to its novel properties and functions. This technology is quite amendable as it allows the scientists to engineer drug nanoparticles of dimensions 10nm – 500nm permitting them to pass via leaky vasculature of tumorigenic microenvironment with higher specificity, reduced cytotoxicity and effective release without any after effects. The central part of the review zooms onto the role of nanoparticles and their targeted delivery for the cure of cancer. Methods: The novel and various versatile nanoparticle platforms viz. polymeric (drug-conjugates, micelles, dendrimers), Lipid-based (liposomes, solid nanoparticle, nanostructured lipid carrier, lipid-polymer hybrid), and stimuli-sensitive (thermoresponsive, ultrasound, pH-responsive, hydrogel) etc. have been designed for a persistent, précised nanodrug delivery and the co-delivery of collegial drug conjugates leading to the formation of safer release of myriad of drugs for cancer chemoprevention. Results: The review concerns about tracing and detailing the drug delivery systems of cancer nanotechnology. Conclusion: Nanotechnology is bestowed with the design, depiction, fabrication, and application of nanostructures, and devices with their controlled delivery together with the imaging of the selected target site and drug release at the specific site of action.


Author(s):  
Weihe Yao ◽  
Chenyu Liu ◽  
Ning Wang ◽  
Hengjun Zhou ◽  
Hailiang Chen ◽  
...  

The targeted multi-responsive drug delivery systems with MRI capacity were anticipated as a promising strategy for tumor therapy and diagnosis. Herein, we successfully synthesized anisamide-modified and non-modified UV/GSH-responsive molecules (10,10-NB-S-S-P-AA...


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3610
Author(s):  
Jialin Yu ◽  
Huayu Qiu ◽  
Shouchun Yin ◽  
Hebin Wang ◽  
Yang Li

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


2021 ◽  
Vol 14 (9) ◽  
pp. 855
Author(s):  
Franklin Afinjuomo ◽  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Yunmei Song ◽  
Sanjay Garg

Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Yan ◽  
Yue Jin ◽  
Chuanxiang Zhao

AbstractNanoparticles as drug delivery systems can alter the drugs' hydrophilicity to affect drug uptake and efflux in tissues. They prevent drugs from non-specifically binding with bio-macromolecules and enhance drug accumulation at the lesion sites, improving therapy effects and reducing unnecessary side effects. Metal–organic frameworks (MOFs), the typical nanoparticles, a class of crystalline porous materials via self-assembled organic linkers and metal ions, exhibit excellent biodegradability, pore shape and sizes, and finely tunable chemical composition. MOFs have a rigid molecular structure, and tunable pore size can improve the encapsulation drug's stability under harsh conditions. Besides, the surface of MOFs can be modified with small-molecule ligands and biomolecule, and binding with the biomarkers which is overexpressed on the surface of cancer cells. MOFs formulations for therapeutic have been developed to effectively respond to the unique tumor microenvironment (TEM), such as high H2O2 levels, hypoxia, and high concentration glutathione (GSH). Thus, MOFs as a drug delivery system should avoid drugs leaking during blood circulation and releasing at the lesion sites via a controlling manner. In this article, we will summary environment responsive MOFs as drug delivery systems for tumor therapy under different stimuli.


2014 ◽  
Vol 50 (58) ◽  
pp. 7824-7827 ◽  
Author(s):  
Minghui Zan ◽  
Junjie Li ◽  
Shizhong Luo ◽  
Zhishen Ge

The multistage polymeric nanogel delivery systems were constructed via host–guest interactions, which showed tumor acidity-triggered disassembly into smaller nanoparticles for deep tissue penetration, high-efficiency cellular uptake, and intracellular endo-lysosomal pH-responsive drug release.


2018 ◽  
Vol 90 ◽  
pp. 356-364 ◽  
Author(s):  
Maira Gaspar Tosato ◽  
Julie V. Maya Girón ◽  
Airton A. Martin ◽  
Vamshi Krishna Tippavajhala ◽  
Mónica Fernández Lorenzo de Mele ◽  
...  

Author(s):  
A. A. Navas ◽  
N. Doreswamy ◽  
P. J. Joseph Francis

Nanomedicine contributes to cancer therapeutics in several ways, harnessing some of the remarkable properties of nanomaterials to target tumor cells with increasing specificity. Nano-scale therapeutic strategies enable the simultaneous transport of hydrophilic and hydrophobic drugs across physical and physiological barriers like the blood-brain barrier. Alternative routes of drug administration, such as the intranasal route, have become viable, with more promising therapies for highly lethal tumors like glioblastomas. Cancer nanomedicine allows increased solubility and bioavailability of anti-cancer drugs, reducing their toxicity. Multi-drug delivery systems such as dendrimers, noble metal nanoparticle drug delivery systems, nanoparticle-based theranostics, and nano-biomarkers may well bring about a sea change in cancer therapeutics. This review presents an overview of the scope of cancer nanomedicine, including immunotherapy for cancer.


2020 ◽  
Vol 21 (8) ◽  
pp. 599-613 ◽  
Author(s):  
Abu Baker ◽  
Mohd Salman Khan ◽  
Muhammad Zafar Iqbal ◽  
Mohd Sajid Khan

Background: Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. Methods: Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. Results: Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. Conclusion: In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.


Sign in / Sign up

Export Citation Format

Share Document