scholarly journals Editorial: Molecular Mechanisms of Voltage-Gating in Ion Channels

2021 ◽  
Vol 12 ◽  
Author(s):  
Gildas Loussouarn ◽  
Mounir Tarek
Author(s):  
Makoto Ihara

Abstract The Cys-loop superfamily of ligand-gated ion channels (Cys-loop receptors) is one of the most ubiquitous ion channel families in vertebrates and invertebrates. Despite their ubiquity, they are targeted by several classes of pesticides, including neonicotinoids, phenylpyrazols, and macrolides such as ivermectins. The current commercialized compounds have high target site selectivity, which contributes to the safety of insecticide use. Structural analyses have accelerated progress in this field; notably, the X-ray crystal structures of acetylcholine binding protein and glutamate-gated Cl channels revealed the details of the molecular interactions between insecticides and their targets. Recently, the functional expression of the insect nicotinic acetylcholine receptor (nAChR) has been described, and detailed evaluations using the insect nAChR have emerged. This review discusses the basic concepts and the current insights into the molecular mechanisms of neuroactive insecticides targeting the ligand-gated ion channels, particularly Cys-loop receptors, and presents insights into target-based selectivity, resistance, and future drug design.


2002 ◽  
Vol 74 (7) ◽  
pp. 1125-1133 ◽  
Author(s):  
Robert F. Margolskee

Taste transduction is a specialized form of signal transduction by which taste receptor cells (TRCs) encode at the cellular level information about chemical substances encountered in the oral environment (so-called tastants). Bitter and sweet taste transduction pathways convert chemical information into a cellular second messenger code utilizing cyclic nucleotides, inositol trisphosphate, and/or diacyl glycerol. These messengers are components of signaling cascades that lead to TRC depolarization and Ca++ release. Bitter and sweet taste transduction pathways typically utilize taste-specific or taste-selective seven transmembrane-helix receptors, G proteins, effector enzymes, second messengers, and ion channels. The structural and chemical diversity of tastants has led to the need for multiple transduction mechanisms. Through molecular cloning and data mining, many of the receptors, G proteins, and effector enzymes involved in transducing responses to bitter and sweet compounds are now known. New insights into taste transduction and taste coding underlying sweet and bitter taste qualities have been gained from molecular cloning of the transduction elements, biochemical elucidation of the transduction pathways, electrophysiological analysis of the function of taste cell ion channels, and behavioral analysis of transgenic and knockout models.


Author(s):  
Yizeng Li ◽  
Xiaohan Zhou ◽  
Sean X. Sun

Cells lacking a stiff cell wall, e.g., mammalian cells, must actively regulate their volume to maintain proper cell function. On the time scale that protein production is negligible, water flow in and out of the cell determines the cell volume variation. Water flux follows hydraulic and osmotic gradients; the latter is generated by various ion channels, transporters, and pumps in the cell membrane. Compared to the widely studied roles of sodium, potassium, and chloride in cell volume regulation, the effects of proton and bicarbonate are less understood. In this work, we use mathematical models to analyze how proton and bicarbonate, combined with sodium, potassium, chloride, and buffer species, regulate cell volume upon inhibition of ion channels, transporters, and pumps. The model includes several common, widely expressed ion transporters and focuses on obtaining generic outcomes. Results show that the intracellular osmolarity remains almost constant before and after cell volume change. The steady-state cell volume does not depend on water permeability. In addition, to ensure the stability of cell volume and ion concentrations, cells need to develop redundant mechanisms to maintain homeostasis, i.e., multiple ion channels or transporters are involved in the flux of the same ion species. These results provide insights for molecular mechanisms of cell volume regulation with additional implications for water-driven cell migration.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 376 ◽  
Author(s):  
Philippe Kischel ◽  
Alban Girault ◽  
Lise Rodat-Despoix ◽  
Mohamed Chamlali ◽  
Silviya Radoslavova ◽  
...  

In the battle against cancer cells, therapeutic modalities are drastically limited by intrinsic or acquired drug resistance. Resistance to therapy is not only common, but expected: if systemic agents used for cancer treatment are usually active at the beginning of therapy (i.e., 90% of primary breast cancers and 50% of metastases), about 30% of patients with early-stage breast cancer will have recurrent disease. Altered expression of ion channels is now considered as one of the hallmarks of cancer, and several ion channels have been linked to cancer cell resistance. While ion channels have been associated with cell death, apoptosis and even chemoresistance since the late 80s, the molecular mechanisms linking ion channel expression and/or function with chemotherapy have mostly emerged in the last ten years. In this review, we will highlight the relationships between ion channels and resistance to chemotherapy, with a special emphasis on the underlying molecular mechanisms.


1993 ◽  
Vol 61 ◽  
pp. 41
Author(s):  
Tervl Elam ◽  
Alfredo Franco ◽  
Christine Haws ◽  
Bruce Winegar ◽  
Jeffry B. Lansman

2005 ◽  
Vol 288 (4) ◽  
pp. G598-G602 ◽  
Author(s):  
Hamid I. Akbarali

Regulation of membrane ion channels by second messengers is an important mechanism by which gastrointestinal smooth muscle excitability is controlled. Receptor-mediated phosphorylation of Ca2+ channels has been known for some time; however, recent findings indicate that these channels may also modulate intracellular signaling. The plasmalemma ion channels may also function as a point of convergence between different receptor types. In this review, the molecular mechanisms that link channel function and signal transduction are discussed. Emerging evidence also indicates altered second-messenger modulation of the Ca2+ channel in the pathophysiology of smooth muscle dysmotility.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4034-4034 ◽  
Author(s):  
Emanuele De Lorenzo ◽  
Serena Pillozzi ◽  
Marika Masselli ◽  
Olivia Crociani ◽  
Andrea Becchetti ◽  
...  

Abstract Targeted therapies are considerably changing the treatment and prognosis of hematologic malignancies. The progressive elucidation of the molecular mechanisms that regulate establishment and progression of tumours is leading to more specific and efficacious pharmacological approaches. In this picture, ion channels represent a relatively unexpected, but very promising players. In particular hERG1 channel expression is altered in many primary leukemias and frequently turn out to exert pleiotropic effects on cancer cell physiology, interaction with the external matrix and stimulation of angiogenesis. hERG1 channels can also trigger intracellular signaling cascades by forming protein complexes with integrins as well as other membrane proteins. These results convey the hypothesis that drugs acting on ion channels could have therapeutic value in the treatment of cancers. Recent evidence suggests that, in certain tumours, application of channel inhibitors does in fact impair cell growth both in vitro and in vivo. A major objection to such a pharmacological approach is the presence of serious side effects, particularly cardiac arrhythmias, especially in the case of hERG1 blockers. This flaw is now being overcome by different approaches, ie the identification of non-arrhythmogenic compounds or calibration of treatment by exploitation of drug selectivity for specific channel states. We tested this possibility in a preclinical model represented by NOD-SCID mice injected with acute leukemia cells and treated with hERG1 blockers. Previous experiments, using NOD/SCID mice injected with AML cells, had shown that herg1 over-expression confers a greater malignancy (Pillozzi S et al, Blood110:1238–50, 2007). The treatment of mice injected with AML cells with specific hERG1 blockers as well as with anti-hERG1 mAb, led to a significant decrease of AML engraftment into the BM and migration into the PB and peripheral organs (Pillozzi S et al, Blood ASH110: 877, 2007). We recently extended our work to an AML cell line stably transfected with the herg1 cDNA (HL60-hERG1), as well as to a ALL cell line (697), which endogenously shows a high herg1 expression. Three groups of treatment were established: control group, E4031-treated group (i.p. starting 1 week after inoculum, 20 mg/kg, daily for 2 weeks) and E4031-treated group (as above, daily until the end of experiment). Various morphometric characteristics of microvessels (density, total vascular area, several size- and shape-related parameters), highlighted through anti-CD34 staining, were quantitated in the BM. Overall, the group of mice treated with hERG1 inhibitors had decreased number of microvessels, decreased total vascular area and size-related parameters. Moreover, E4031 treated mice showed a longer survival compared to the untreated ones. Finally, we evaluated cardiac toxicity in vivo of E4031: no significant variation in ECG parameters were detected, nor gross morphological alterations. Nevertheless, we are also testing different pharmacological categories of hERG1 blockers, such the anti-psychotic drug sertindole, proven to be avoid of any cardiac side effect, despite a strong block of hERG1.


Sign in / Sign up

Export Citation Format

Share Document