scholarly journals Transmission Structured Illumination Microscopy for Quantitative Phase and Scattering Imaging

2021 ◽  
Vol 8 ◽  
Author(s):  
Kai Wen ◽  
Ying Ma ◽  
Min Liu ◽  
Jianlang Li ◽  
Zeev Zalevsky ◽  
...  

In this paper, we demonstrate a digital micromirror device (DMD) based optical microscopic apparatus for quantitative differential phase contrast (qDIC) imaging, coherent structured illumination microscopy (SIM), and dual-modality (scattering/fluorescent) imaging. For both the qDIC imaging and the coherent SIM, two sets of fringe patterns with orthogonal orientations and five phase-shifts for each orientation, are generated by a DMD and projected on a sample. A CCD camera records the generated images in a defocusing manner for qDIC and an in-focus manner for coherent SIM. Both quantitative phase images and super-resolved scattering/fluorescence images can be reconstructed from the recorded intensity images. Moreover, fluorescent imaging modality is integrated, providing specific biochemical structures of the sample once using fluorescent labeling.

2019 ◽  
Vol 12 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Xibin Yang ◽  
Qian Zhu ◽  
Zhenglong Sun ◽  
Gang Wen ◽  
Xin Jin ◽  
...  

Structured illumination microscopy (SIM) is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly used fluorescent labeling methods. Structured illumination can be obtained by either laser interference or projection of fringe patterns. Here, we proposed a fringe projector composed of a compact multi-wavelength LEDs module and a digital micromirror device (DMD) which can be directly attached to most commercial inverted fluorescent microscopes and update it into a SIM system. The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured light field were studied. With the optimized fringe pattern, [Formula: see text] resolution improvement could be obtained with high-end oil objectives. Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated. Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in the field of life science and medicine.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Karl Zhanghao ◽  
Xingye Chen ◽  
Wenhui Liu ◽  
Meiqi Li ◽  
Yiqiong Liu ◽  
...  

Abstract Fluorescence polarization microscopy images both the intensity and orientation of fluorescent dipoles and plays a vital role in studying molecular structures and dynamics of bio-complexes. However, current techniques remain difficult to resolve the dipole assemblies on subcellular structures and their dynamics in living cells at super-resolution level. Here we report polarized structured illumination microscopy (pSIM), which achieves super-resolution imaging of dipoles by interpreting the dipoles in spatio-angular hyperspace. We demonstrate the application of pSIM on a series of biological filamentous systems, such as cytoskeleton networks and λ-DNA, and report the dynamics of short actin sliding across a myosin-coated surface. Further, pSIM reveals the side-by-side organization of the actin ring structures in the membrane-associated periodic skeleton of hippocampal neurons and images the dipole dynamics of green fluorescent protein-labeled microtubules in live U2OS cells. pSIM applies directly to a large variety of commercial and home-built SIM systems with various imaging modality.


2012 ◽  
Vol 516 ◽  
pp. 640-644
Author(s):  
Shin Usuki ◽  
Hiroyoshi Kanaka ◽  
Kenjiro Takai Miura

In a variety of practical microscopic imaging applications, many industries require not only lateral resolution improvement but also axial resolution improvement. The resolution in optical microscopy is limited by diffraction and determined by the wavelength of the incident light and the numerical aperture (NA) of the objective lens. The diffraction limit is mathematically described by a point spread function in the imaging system, and three-dimensional (3D) point spread functions describe both the lateral and axial resolutions. Thus, it is useful to focus on exceeding this limit and improving the resolution of optical imaging by the spatial control of structured illumination. Structured illumination microscopy is a familiar technique to improve resolution in fluorescent imaging, and it is expected to be applied to industrial applications. Microscopic imaging is convenient, non-destructive, and has a high-throughput performance and compatibility with a number of applications. However, the spatial resolution of conventional light microscopy is limited to wavelength scale and the depth of field is shallow; hence, it is difficult to obtain detailed 3D spatial data of the object to be measured. Here, we propose a new technique for generating and controlling wide-field 3D structured illumination. The technique, based on the 3D interference of multiple laser beams, provides lateral and axial resolution improvement, and a wide 3D field of view. The spatial configuration of the beams was theoretically examined and the optimal incident angle of the multiple beams was confirmed. Numerical simulations using the finite difference time domain (FDTD) method were carried out and confirmed the generation of 3D structured illumination and spatial control of the illumination by using the phase shift of incident beams.


Nanoscale ◽  
2014 ◽  
Vol 6 (11) ◽  
pp. 5807-5812 ◽  
Author(s):  
Joseph Louis Ponsetto ◽  
Feifei Wei ◽  
Zhaowei Liu

Fluorescent imaging resolution down to 51 nm is shown by generating tunable localized plasmon excitations on a nano-antenna array.


2021 ◽  
Author(s):  
Sarita Ahlawat ◽  
Purnima Sharma ◽  
Ankita Pandey ◽  
Durga Bisht ◽  
Aanisa Jan ◽  
...  

We summarize a study involving simultaneous imaging of cervical cells from Pap-smear samples using bright-field and quantitative phase microscopy. The optimization approach to phase reconstruction used in our study enables full diffraction limited performance from single-shot holograms and is thus suitable for reducing cost of a quantitative phase microscope system. Over 48000 cervical cells from patient samples obtained from three clinical sites have been imaged in this study. The clinical sites used different sample preparation methodologies and the subjects represented a range of age groups and geographical diversity. Visual examination of quantitative phase images of cervical cell nuclei show distinct morphological features that we believe have not appeared in the prior literature. A PCA based analysis of numerical parameters derived from the bright-field and quantitative phase images of the cervical cells shows good separation of superficial, intermediate and abnormal cells. The distribution of phase based parameters of normal cells is also shown to be highly overlapping among different patients from the same clinical site, patients across different clinical sites and for two age groups (below and above 30 years), thus suggesting robustness and possibility of standardization of quantitative phase as an imaging modality for cell classification in future clinical usage.


Sign in / Sign up

Export Citation Format

Share Document