scholarly journals Changes in Physiological Parameters, Lipid Metabolism, and Expression of MicroRNAs in Genetically Improved Farmed Tilapia (Oreochromis niloticus) With Fatty Liver Induced by a High-Fat Diet

2018 ◽  
Vol 9 ◽  
Author(s):  
Yi-Fan Tao ◽  
Jun Qiang ◽  
Jing-Wen Bao ◽  
De-Ju Chen ◽  
Guo-Jun Yin ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yan Yang ◽  
Wenting Zhang ◽  
Xiaohui Wu ◽  
Jing Wu ◽  
Chengjun Sun ◽  
...  

Objective. Our recent study demonstrated that growth differentiation factor 5 (GDF5) could promote white adipose tissue thermogenesis and alleviate high-fat diet- (HFD-) induced obesity in fatty acid-binding protein 4- (Fabp4-) GDF5 transgenic mice (TG). Here, we further investigated the effects of systemic overexpression of the GDF5 gene in adipocytes HFD-induced nonalcoholic fatty liver disease (NAFLD). Methods. Fabp4-GDF5 TG mice were administered an HFD feeding. NAFLD-related indicators associated with lipid metabolism and inflammation were measured. A GDF5 lentiviral vector was constructed, and the LO2 NAFLD cell model was induced by FFA solution (oleic acid and palmitic acid). The alterations in liver function, liver lipid metabolism, and related inflammatory indicators were analyzed. Results. The liver weight was significantly reduced in the TG group, which was in accordance with the significantly downregulated expression of TNFα, MCP1, Aim2, and SREBP-1c and significantly upregulated expression of CPT-1α and ACOX2 in TG mouse livers. Compared to that of cells in the FAA-free control group, LO2 cells with in situ overexpression of GDF5 developed lipid droplets after FFA treatment; the levels of triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were significantly increased in both the GDF5 lentivirus and control lentivirus groups compared with those of the FAA-free group. Additionally, the levels of FAS, SREBP-1, CPT-1α, and inflammation-associated genes, such as ASC and NLRC4, were unaltered despite GDF5 treatment. Conclusion. Systemic overexpression of GDF5 in adipose tissue in vivo significantly reduced HFD-induced NAFLD liver damage in mice. The overexpression of GDF5 in hepatocytes failed to improve lipid accumulation and inflammation-related reactions induced by mixed fatty acids, suggesting that the protective effect of GDF5 in NAFLD was mainly due to the reduction in adipose tissue and improvements in metabolism. Hence, our study suggests that the management of NAFLD should be targeted to reduce the overall amount of body fat and improve metabolic status before the progression to nonalcoholic steatohepatitis occurs.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 447 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Yau-Ker Lee ◽  
Nai-Chun Ting ◽  
Ya-Ling Chen ◽  
Szu-Chuan Shen ◽  
...  

Licochalcone A is a chalcone isolated from Glycyrrhiza uralensis. It showed anti-tumor and anti-inflammatory properties in mice with acute lung injuries and regulated lipid metabolism through the activation of AMP-activated protein kinase (AMPK) in hepatocytes. However, the effects of licochalcone A on reducing weight gain and improving nonalcoholic fatty liver disease (NAFLD) are unclear. Thus, the present study investigated whether licochalcone A ameliorated weight loss and lipid metabolism in the liver of high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD to induce obesity and NAFLD, and then were injected intraperitoneally with licochalcone A. In another experiment, a fatty liver cell model was established by incubating HepG2 hepatocytes with oleic acid and treating the cells with licochalcone A to evaluate lipid metabolism. Our results demonstrated that HFD-induced obese mice treated with licochalcone A had decreased body weight as well as inguinal and epididymal adipose tissue weights compared with HFD-treated mice. Licochalcone A also ameliorated hepatocyte steatosis and decreased liver tissue weight and lipid droplet accumulation in liver tissue. We also found that licochalcone A significantly regulated serum triglycerides, low-density lipoprotein, and free fatty acids, and decreased the fasting blood glucose value. Furthermore, in vivo and in vitro, licochalcone A significantly decreased expression of the transcription factor of lipogenesis and fatty acid synthase. Licochalcone A activated the sirt-1/AMPK pathway to reduce fatty acid chain synthesis and increased lipolysis and β-oxidation in hepatocytes. Licochalcone A can potentially ameliorate obesity and NAFLD in mice via activation of the sirt1/AMPK pathway.


2019 ◽  
Vol 10 (2) ◽  
pp. 814-823 ◽  
Author(s):  
Ke Chen ◽  
Xu Chen ◽  
Hongliang Xue ◽  
Peiwen Zhang ◽  
Wanjun Fang ◽  
...  

Coenzyme Q10 regulates lipid metabolism to ameliorate the progression of NAFLD by activating the AMPK pathway.


2015 ◽  
Vol 3 (8) ◽  
pp. e12485 ◽  
Author(s):  
An-Yuan He ◽  
Li-Jun Ning ◽  
Li-Qiao Chen ◽  
Ya-Li Chen ◽  
Qi Xing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document