scholarly journals The Expanding Cell Diversity of the Brain Vasculature

2020 ◽  
Vol 11 ◽  
Author(s):  
Jayden M. Ross ◽  
Chang Kim ◽  
Denise Allen ◽  
Elizabeth E. Crouch ◽  
Kazim Narsinh ◽  
...  

The cerebrovasculature is essential to brain health and is tasked with ensuring adequate delivery of oxygen and metabolic precursors to ensure normal neurologic function. This is coordinated through a dynamic, multi-directional cellular interplay between vascular, neuronal, and glial cells. Molecular exchanges across the blood–brain barrier or the close matching of regional blood flow with brain activation are not uniformly assigned to arteries, capillaries, and veins. Evidence has supported functional segmentation of the brain vasculature. This is achieved in part through morphologic or transcriptional heterogeneity of brain vascular cells—including endothelium, pericytes, and vascular smooth muscle. Advances with single cell genomic technologies have shown increasing cell complexity of the brain vasculature identifying previously unknown cell types and further subclassifying transcriptional diversity in cardinal vascular cell types. Cell-type specific molecular transitions or zonations have been identified. In this review, we summarize emerging evidence for the expanding vascular cell diversity in the brain and how this may provide a cellular basis for functional segmentation along the arterial-venous axis.

2018 ◽  
Author(s):  
Margarita Khariton ◽  
Xian Kong ◽  
Jian Qin ◽  
Bo Wang

ABSTRACTJamming models developed in inanimate matter have been widely used to describe cell packing in tissues1–7, but predominantly neglect cell diversity, despite its prevalence in biology. Most tissues, animal brains in particular, comprise a mix of many cell types, with mounting evidence suggesting that neurons can recognize their respective types as they organize in space8–11. How cell diversity revises the current jamming paradigm is unknown. Here, in the brain of the flatworm planarian Schmidtea mediterranea, which exhibits remarkable tissue plasticity within a simple, quantifiable nervous system12–16, we identify a distinct packing state, ‘chromatic’ jamming. Combining experiments with computational modeling, we show that neurons of distinct types form independent percolating networks barring any physical contact. This jammed state emerges as cell packing configurations become constrained by cell type-specific interactions and therefore may extend to describe cell packing in similarly complex tissues composed of multiple cell types.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sweta Parab ◽  
Rachael E Quick ◽  
Ryota L Matsuoka

Vascular endothelial cells (vECs) in the brain exhibit structural and functional heterogeneity. Fenestrated, permeable brain vasculature mediates neuroendocrine function, body-fluid regulation, and neural immune responses; however, its vascular formation remains poorly understood. Here, we show that specific combinations of vascular endothelial growth factors (Vegfs) are required to selectively drive fenestrated vessel formation in the zebrafish myelencephalic choroid plexus (mCP). We found that the combined, but not individual, loss of Vegfab, Vegfc, and Vegfd causes severely impaired mCP vascularization with little effect on neighboring non-fenestrated brain vessel formation, demonstrating fenestrated-vEC-specific angiogenic requirements. This Vegfs-mediated vessel-selective patterning also involves Ccbe1. Expression analyses, cell-type-specific ablation, and paracrine activity-deficient vegfc mutant characterization suggest that vEC-autonomous Vegfc and meningeal fibroblast-derived Vegfab and Vegfd are critical for mCP vascularization. These results define molecular cues and cell types critical for directing fenestrated CP vascularization and indicate that vECs’ distinct molecular requirements for angiogenesis underlie brain vessel heterogeneity.


1969 ◽  
Vol 40 (1) ◽  
pp. 124-133
Author(s):  
Lina Vanessa Becerra ◽  
Hernán José Pimienta

Programmed cell death occurs as a physiological process during development. In the brain and spinal cord this event determines the number and location of the different cell types. In adulthood, programmed cell death or apoptosis is more restricted but it may play a major role in different acute and chronic pathological entities. However, in contrast to other tissues where apoptosis has been widely documented from a morphological point of view, in the central nervous system complete anatomical evidence of apoptosis is scanty. In spite of this there is consensus about the activation of different signal systems associated to programmed cell death. In the present article we attempt to summarize the main apoptotic pathways so far identified in nervous tissue. Considering that apoptotic pathways are multiple, the neuronal cell types are highly diverse and specialized and that neuronal response to injury and survival depends upon tissue context, (i.e., preservation of connectivity, glial integrity and cell matrix, blood supply and trophic factors availability) what is relevant for the apoptotic process in a sector of the brain may not be important in another.


Nature ◽  
2018 ◽  
Vol 560 (7716) ◽  
pp. E3-E3 ◽  
Author(s):  
Michael Vanlandewijck ◽  
Liqun He ◽  
Maarja Andaloussi Mäe ◽  
Johanna Andrae ◽  
Koji Ando ◽  
...  

1998 ◽  
Vol 18 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Ursula Sonnewald ◽  
Leif Hertz ◽  
Arne Schousboe

Classically, compartmentation of glutamate metabolism in the brain is associated with the fact that neurons and glia exhibit distinct differences with regard to metabolism of this amino acid. The recent use of 13C-labeled compounds to study this metabolism in conjunction with the availability of cell type-specific tissue culture modes has led to the notion that such compartmentation may even be present in individual cell types, neurons as well as glia. To better understand and explain this, it is proposed that mitochondrial heterogeneity may exist resulting in tricarboxylic acid cycles with different properties regarding cycling rates and ratio as well as coupling to amino acid biosynthesis, primarily involving glutamate and aspartate. These hypotheses are evaluated in the light of current knowledge about mitochondrial structure and function.


2021 ◽  
Author(s):  
Sruti Rayaprolu ◽  
Sara Bitarafan ◽  
Ranjita Betarbet ◽  
Sydney N Sunna ◽  
Lihong Cheng ◽  
...  

Isolation and proteomic profiling of brain cell types, particularly neurons, pose several technical challenges which limit our ability to resolve distinct cellular phenotypes in neurological diseases. Therefore, we generated a novel mouse line that enables cell type-specific expression of a biotin ligase, TurboID, via Cre-lox strategy for in vivo proximity-dependent biotinylation of proteins. Using adenoviral-based and transgenic approaches, we show striking protein biotinylation in neuronal cell bodies and axons throughout the mouse brain. We quantified more than 2,000 neuron-derived proteins following enrichment that mapped to numerous subcellular compartments. Synaptic, transmembrane transporters, ion channel subunits, and disease-relevant druggable targets were among the most significantly enriched proteins. Remarkably, we resolved brain region-specific proteomic profiles of Camk2a neurons with distinct functional molecular signatures and disease associations that may underlie regional neuronal vulnerability. Leveraging the neuronal specificity of this in vivo biotinylation strategy, we used an antibody-based approach to uncover regionally unique patterns of neuron-derived signaling phospho-proteins and cytokines, particularly in the cortex and cerebellum. Our work provides a proteomic framework to investigate cell type-specific mechanisms driving physiological and pathological states of the brain as well as complex tissues beyond the brain.


Nature ◽  
2018 ◽  
Vol 554 (7693) ◽  
pp. 475-480 ◽  
Author(s):  
Michael Vanlandewijck ◽  
Liqun He ◽  
Maarja Andaloussi Mäe ◽  
Johanna Andrae ◽  
Koji Ando ◽  
...  

2019 ◽  
Author(s):  
Alexander J. Cammack ◽  
Arnav Moudgil ◽  
Tomas Lagunas ◽  
Michael J. Vasek ◽  
Mark Shabsovich ◽  
...  

AbstractTranscription factors (TFs) play a central role in the regulation of gene expression, controlling everything from cell fate decisions to activity dependent gene expression. However, widely-used methods for TF profiling in vivo (e.g. ChIP-seq) yield only an aggregated picture of TF binding across all cell types present within the harvested tissue; thus, it is challenging or impossible to determine how the same TF might bind different portions of the genome in different cell types, or even to identify its binding events at all in rare cell types in a complex tissue such as the brain. Here we present a versatile methodology, FLEX Calling Cards, for the mapping of TF occupancy in specific cell types from heterogenous tissues. In this method, the TF of interest is fused to a hyperactive piggyBac transposase (hypPB), and this bipartite gene is delivered, along with donor transposons, to mouse tissue via a Cre-dependent adeno-associated virus (AAV). The fusion protein is expressed in Cre-expressing cells where it inserts transposon “Calling Cards” near to TF binding sites. These transposons permanently mark TF binding events and can be mapped using high-throughput sequencing. Alternatively, unfused hypPB interacts with and records the binding of the super enhancer (SE)-associated bromodomain protein, Brd4. To demonstrate the FLEX Calling Card method, we first show that donor transposon and transposase constructs can be efficiently delivered to the postnatal day 1 (P1) mouse brain with AAV and that insertion profiles report TF occupancy. Then, using a Cre-dependent hypPB virus, we show utility of this tool in defining cell type-specific TF profiles in multiple cell types of the brain. This approach will enable important cell type-specific studies of TF-mediated gene regulation in the brain and will provide valuable insights into brain development, homeostasis, and disease.


Sign in / Sign up

Export Citation Format

Share Document