scholarly journals Current Predictive Resting Metabolic Rate Equations Are Not Sufficient to Determine Proper Resting Energy Expenditure in Olympic Young Adult National Team Athletes

2021 ◽  
Vol 12 ◽  
Author(s):  
Aydın Balci ◽  
Ebru Arslanoğlu Badem ◽  
Ayfer Ezgi Yılmaz ◽  
Aslı Devrim-Lanpir ◽  
Bihter Akınoğlu ◽  
...  

Predictive resting metabolic rate (RMR) equations are widely used to determine athletes’ resting energy expenditure (REE). However, it remains unclear whether these predictive RMR equations accurately predict REE in the athletic populations. The purpose of the study was to compare 12 prediction equations (Harris-Benedict, Mifflin, Schofield, Cunningham, Owen, Liu’s, De Lorenzo) with measured RMR in Turkish national team athletes and sedentary controls. A total of 97 participants, 49 athletes (24 females, 25 males), and 48 sedentary (28 females, 20 males), were recruited from Turkey National Olympic Teams at the Ministry of Youth and Sports. RMR was measured using a Fitmate GS (Cosmed, Italy). The results of each 12 prediction formulas were compared with the measured RMR using paired t-test. The Bland-Altman plot was performed to determine the mean bias and limits of agreement between measured and predicted RMRs. Stratification according to sex, the measured RMR was greater in athletes compared to controls. The closest equation to the RMR measured by Fitmate GS was the Harris-Benedict equation in male athletes (mean difference -8.9 (SD 257.5) kcal/day), and Liu’s equation [mean difference -16.7 (SD 195.0) kcal/day] in female athletes. However, the intra-class coefficient (ICC) results indicated that all equations, including Harris-Benedict for male athletes (ICC = 0.524) and Liu’s for female athletes (ICC = 0.575), had a moderate reliability compared to the measured RMR. In sedentary subjects, the closest equation to the measured RMR is the Nelson equation in males, with the lowest RMSE value of 118 kcal/day [mean difference: 10.1 (SD 117.2) kJ/day], whereas, in females, all equations differ significantly from the measured RMR. While Nelson (ICC = 0.790) had good and Owen (ICC = 0.722) and Mifflin (calculated using fat-free mass) (ICC = 0.700) had moderate reliability in males, all predictive equations showed poor reliability in females. The results indicate that the predictive RMR equations failed to accurately predict RMR levels in the participants. Therefore, it may not suitable to use them in determining total energy expenditure.

2011 ◽  
Vol 57 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Motoko TAGUCHI ◽  
Kazuko ISHIKAWA-TAKATA ◽  
Wakako TATSUTA ◽  
Chisa KATSURAGI ◽  
Chiyoko USUI ◽  
...  

2010 ◽  
Vol 91 (4) ◽  
pp. 907-912 ◽  
Author(s):  
Fahad Javed ◽  
Qing He ◽  
Lance E Davidson ◽  
John C Thornton ◽  
Jeanine Albu ◽  
...  

2011 ◽  
Vol 57 (6) ◽  
pp. 394-400 ◽  
Author(s):  
Satomi OSHIMA ◽  
Sakiho MIYAUCHI ◽  
Hiroshi KAWANO ◽  
Toshimichi ISHIJIMA ◽  
Meiko ASAKA ◽  
...  

PEDIATRICS ◽  
1993 ◽  
Vol 91 (2) ◽  
pp. 281-286
Author(s):  
Robert C. Klesges ◽  
Mary L. Shelton ◽  
Lisa M. Klesges

The effects of television viewing on resting energy expenditure (metabolic rate) in obese and normal-weight children were studied in a laboratory setting. Subjects were 15 obese children and 16 normal-weight children whose ages ranged from 8 to 12 years. All subjects had two measures of resting energy expenditure obtained while at rest and one measurement of energy expenditure taken while viewing television. Results indicated that metabolic rate during television viewing was significantly lower (mean decrease of 211 kcal extrapolated to a day) than during rest. Obese children tended to have a larger decrease, although this difference was not statistically significant (262 kcal/d vs 167 kcal/d, respectively). It was concluded that television viewing has a fairly profound lowering effect of metabolic rate and may be a mechanism for the relationship between obesity and amount of television viewing.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


1993 ◽  
Vol 3 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Janice Thompson ◽  
Melinda M. Manore ◽  
James S. Skinner

The resting metabolic rate (RMR) and thermic effect of a meal (TEM) were determined in 13 low-energy intake (LOW) and 11 adequate-energy intake (ADQ) male endurance athletes. The LOW athletes reported eating 1,490 kcal·day-1less than the ADQ group, while the activity level of both groups was similar. Despite these differences, both groups had a similar fat-free mass (FFM) and had been weight stable for at least 2 years. The RMR was significantly lower (p<0.05) in the LOW group compared to the values of the ADQ group (1.19 vs. 1.29 kcal·FFM-1·hr-l, respectively); this difference represents a lower resting expenditure of 158 kcal·day-1. No differences were found in TEM between the two groups. These results suggest that a lower RMR is one mechanism that contributes to weight maintenance in a group of low- versus adequate-energy intake male athletes.


2020 ◽  
Vol 105 (4) ◽  
pp. e1741-e1748 ◽  
Author(s):  
Emanuele Muraca ◽  
Stefano Ciardullo ◽  
Alice Oltolini ◽  
Francesca Zerbini ◽  
Eleonora Bianconi ◽  
...  

Abstract Context Growing evidence suggests that appropriate levothyroxine (LT4) replacement therapy may not correct the full set of metabolic defects afflicting individuals with hypothyroidism. Objective To assess whether obese subjects with primary hypothyroidism are characterized by alterations of the resting energy expenditure (REE). Design Retrospective analysis of a set of data about obese women attending the outpatients service of a single obesity center from January 2013 to July 2019. Patients A total of 649 nondiabetic women with body mass index (BMI) &gt; 30 kg/m2 and thyrotropin (TSH) level 0.4–4.0 mU/L were segregated into 2 groups: patients with primary hypothyroidism taking LT4 therapy (n = 85) and patients with normal thyroid function (n = 564). Main outcomes REE and body composition assessed using indirect calorimetry and bioimpedance. Results REE was reduced in women with hypothyroidism in LT4 therapy when compared with controls (28.59 ± 3.26 vs 29.91 ± 3.59 kcal/kg fat-free mass (FFM)/day), including when adjusted for age, BMI, body composition, and level of physical activity (P = 0.008). This metabolic difference was attenuated only when adjustment for homeostatic model assessment of insulin resistance (HOMA-IR) was performed. Conclusions This study demonstrated that obese hypothyroid women in LT4 therapy, with normal serum TSH level compared with euthyroid controls, are characterized by reduced REE, in line with the hypothesis that standard LT4 replacement therapy may not fully correct metabolic alterations related to hypothyroidism. We are not able to exclude that this feature may be influenced by the modulation of insulin sensitivity at the liver site, induced by LT4 oral administration.


Nutrition ◽  
2011 ◽  
Vol 27 (9) ◽  
pp. 885-890 ◽  
Author(s):  
Miloslav Hronek ◽  
Petr Klemera ◽  
Jindrich Tosner ◽  
Dana Hrnciarikova ◽  
Zdenek Zadak

Sign in / Sign up

Export Citation Format

Share Document