scholarly journals Antiproteinuric and Hyperkalemic Mechanisms Activated by Dual Versus Single Blockade of the RAS in Renovascular Hypertensive Rats

2021 ◽  
Vol 12 ◽  
Author(s):  
José Wilson N. Corrêa ◽  
Karoline R. Boaro ◽  
Letícia B. Sene ◽  
Juliano Z. Polidoro ◽  
Thiago A. Salles ◽  
...  

This study aimed to investigate the antiproteinuric and hyperkalemic mechanisms activated by dual renin-angiotensin system (RAS) blockade in renovascular hypertensive rats (2-kidney 1-clip model [2K-1C]). Six weeks after clipping the left renal artery or sham operation (2K), rats were treated with losartan, enalapril, or both drugs for two weeks. We found that 2K-1C rats displayed higher tail-cuff blood pressure (BP), increased non-clipped kidney Ang II concentration, and more pronounced urinary albumin excretion than 2K. BP was decreased by the treatment with either enalapril or losartan, and the combination of both drugs promoted an additional antihypertensive effect in 2K-1C rats. Renal Ang II content and albuminuria were reduced by either enalapril or losartan in monotherapy and restored to control levels by dual RAS blockade. Albuminuria in 2K-1C rats was accompanied by downregulation of the glomerular slit protein podocin, reduction of the endocytic receptors megalin and cubilin, and a marked decrease in the expression of the ClC-5 chloride channel, compared to 2K animals. Treatment with losartan and enalapril in monotherapy or combination increased the expression of podocin, cubilin, and ClC-5. However, only the combined therapy normalized podocin, cubilin, and ClC-5 protein abundance in the non-clipped kidney of 2K-1C rats. Renovascular hypertensive 2K-1C rats had a lower concentration of plasma potassium compared to 2K rats. Single RAS blockade normalized potassium plasma concentration, whereas 2K-1C rats treated with dual RAS blockade exhibited hyperkalemia. Hypokalemia in 2K-1C rats was accompanied by an increase in the cleaved activated forms of α-ENaC and γ-ENaC and the expression of β-ENaC. Combined RAS blockade but not monotherapy significantly reduced the expression of these ENaC subunits in 2K-1C rats. Indeed, double RAS blockade reduced the abundance of cleaved-α-ENaC to levels lower than those of 2K rats. Collectively, these results demonstrate that the antiproteinuric effect of dual RAS blockade in 2K-1C rats is associated with the restored abundance of podocin and cubilin, and ClC-5. Moreover, double RAS blockade-induced hyperkalemia may be due, at least partially, to an exaggerated downregulation of cleaved α-ENaC in the non-clipped kidney of renovascular hypertensive rats.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Saki Maruyama ◽  
Yukiko Segawa ◽  
Hiroko Hashimoto ◽  
Tomoko Osea ◽  
Nobutaka Kurihara

Objective: Saccharina japonica (SJ), one of brown algae, is a common foodstuff in Japan and neighbor countries. Some studies have shown that the intake of SJ decreases blood pressure (BP) in spontaneously hypertensive rats. As well, we previously observed it in 2-kidney, 1-clip renovascular hypertensive (2K1C) rats. However, the mechanism is still unclear. One of possible components of SJ which play an important role in decreasing BP is alginate. Since alginate is richer in the roots than in the blades in SJ, in the present study, we compared the effects in alleviating BP of intake of SJ roots with that of SJ blades in 2K1C rats. We also evaluated angiotensin II receptor type 1 (AT1R) mRNA to investigate the role of renin-angiotensin system in the mechanism. Methods: Male Sprague-Dawley rats (6 wks) were treated with sham operation (SHAM) or clipping the left renal artery (2K1C). After surgery, the rats started receiving a control diet (C) or a diet containing 5.0% (w/w) SJ blades (B), or SJ roots (R) for 6 weeks. The systolic BP (SBP) was measured by a tail-cuff method every week. At the end of the protocol, mean arterial pressure (MAP) was measured in each rat under anesthesia. Then, the aortas were removed for extracting mRNA. AT1R-mRNA expression was evaluated using reverse transcriptase quantitative real-time PCR. Results: SBP was significantly higher in 2K1C-C than SHAM-C through the experiment period (p<0.001). SBP in 2K1C-B and -R was significantly lower than in 2K1C-C (p<0.001). 2K1C-B showed a significant reduction in SBP compared with in 2K1C-R (p<0.05). At the end of the protocol, MAP showed the similar trend to SBP. AT1R mRNA expression was higher in 2K1C than in SHAM, but there were no significant differences among 2K1C-C, -B and -R. Conclusion: Although alginate is richer in the roots than in the blades in SJ, the effects in alleviating BP was higher in the blades than in the roots. Thus, alginate may play no major role in the mechanism. AT1R may not play an important role, neither. Therefore, we need investigate other possible mechanisms.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Ayuna Yamaoka ◽  
Yukiko Segawa ◽  
Saki Maruyama ◽  
Natsumi Saito ◽  
Hiroko Hashimoto ◽  
...  

Objective: Hesperidin (HES) is a flavonoid which is contained in citrus fruit peel. It has physiological effects on blood vessels such as strengthening capillary vessels. Thus, it is known to be one of the effective ingredients of herbal medicine. Some studies have shown that the intake of HES decreases blood pressure (BP) in spontaneously hypertensive rats. The antihypertensive effect of HES is suggested to be due to vasodilation by nitric oxide (NO). However, its mechanism has not been clarified in detail. In this study, we observed whether HES intake decreases BP in 2-kidney, 1-clip renovasucular hypertensive rats (2K1C) and evaluated endothelial NO synthase (eNOS) mRNA to investigate its role in the mechanism. Methods: Male Sprague-Dawley rats (6 weeks old) were treated with sham operation (SHAM) or clipping the left renal artery (2K1C). After surgery, the rats started receiving continuously a control diet (C) or a diet containing 0.1% (w/w) HES for 6 weeks. The systolic BP (SBP) was measured by a tail-cuff method every week. At the end of the protocol, mean arterial blood pressure (MAP) was measured in each rat under anesthesia. Then, the aortas were removed for extracting mRNA. eNOS mRNA expression was evaluated using real-time RT-PCR. Results: At the end of the protocol, SBP in 2K1C-C was significantly higher than in SHAM-C (170±6 vs 117±6 mmHg, p <0.001). On the other hand, 2K1C-HES was lower in SBP (141±4 mmHg) than 2K1C-C ( p <0.01). There were no significant differences between SHAM-HES (122±7 mmHg) and SHAM-C. MAP at the end of the protocol were similar to in SBP. ANOVA revealed mRNA expression of eNOS was significantly higher in 2K1C than in SHAM ( p <0.05), and showed no significant difference between C and HES, nor a significant interaction. Conclusion: Continuous intake of HES may suppress BP increase in 2K1C. The role of eNOS mRNA expression may not be involved in the mechanism.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Orly Leiva ◽  
Khalid M Elased ◽  
Mariana Morris ◽  
Nadja Grobe

There are 26 million adults with chronic kidney disease (CKD) in the U.S. and the incidence continues to increase. It is well documented that the activation of the renin angiotensin system and the elevated formation of angiotensin (Ang) II both contribute to renal pathophysiology in CKD. Emerging evidence suggests that the Ang II degrading protease prolyl carboxypeptidase (PCP) is renoprotective. Thus, we investigated protein expression and activity of renal PCP using immunofluorescence, western blot and mass spectrometry in a mouse model of CKD. Renal injury in male C57Bl6 mice was caused by constriction of the left renal artery using silver clips (2K1C-method). Blood pressure measurements by radiotelemetry revealed a significant increase of 36.1 ± 3.9 mm Hg in 2K1C animals compared with control animals 1 week after clip placement (p<0.0001). Using immunofluorescence and confocal microscopy, PCP was localized in the Bowman’s capsule of the glomerulus and in proximal and distal renal tubules. Western blot analysis showed PCP was significantly reduced in clipped 2K1C kidneys compared to unclipped kidneys of the 2K1C mice or compared to control mice (clipped 0.04 ± 0.02 vs unclipped 0.58 ± 0.16 vs control 0.65 ± 0.18, p < 0.05). In addition, renal PCP enzyme activity was found to be markedly reduced in 2K1C kidneys as assessed by mass spectrometric based enzyme assays (clipped 37.1 ± 4.3 pmol Ang-(1-7)/h/μg vs unclipped 77.3 ± 12.3 pmol Ang-(1-7)/h/μg vs control 120.7 ± 14.7 pmol Ang-(1-7)/h/μg, p < 0.01). In contrast, protein expression of prolyl endopeptidase, another enzyme capable of converting Ang II into Ang-(1-7), was not affected. Notably, renal pathologies were exacerbated in the 2K1C model as revealed by a significant increase in mesangial expansion (clipped 34.6 ± 3.1 vs unclipped 52.1 ± 4.0 vs control 1.2 ± 2.1, p < 0.0001) and renal fibrosis (clipped 57.5 ± 0.9 vs unclipped 33.0 ± 0.7 vs control 3.3 ± 0.2, p < 0.0001). Results suggest that PCP is suppressed in chronic kidney injury and that this downregulation may attenuate renoprotective effects via impaired Ang II degradation by PCP. Therefore, Ang II processing by PCP may have clinical implications in patients with renal pathologies.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jorge F Giani ◽  
Tea Djandjoulia ◽  
Nicholas Fetcher ◽  
Sebastien Fuchs ◽  
Dale M Seth ◽  
...  

Introduction: The responses to chronic angiotensin (Ang) II infusions of gene-targeted mice lacking kidney angiotensin-converting enzyme (ACE), in terms of intrarenal Ang II accumulation, hypertension, sodium and water retention are all blunted or absent. The objective of this study was to determine if these reduced responses were associated with changes in the intrarenal renin-angiotensin system (RAS). METHODS: Mice lacking intrarenal ACE (ACE10/10) were generated by targeted homologous recombination placing the expression of ACE only in macrophages. As a result, these mice have normal circulating ACE levels, but no kidney ACE. Wild-type (WT) mice of the same background (C57Bl/J) served as controls. Mice were subjected to sham-operation or subcutaneous infusion of Ang II for two weeks (n=6-10, 400 ng/kg/min via osmotic minipump). Mean arterial pressure (MAP) was followed by telemetry. At the end of the experiment, the kidneys were collected for analysis. Ang II content was measured by RIA. Renal abundance of ACE, angiotensinogen (AGT) and Ang II receptor type 1 (AT1R) were determined by Western Blot in total kidney homogenates. Results: At baseline, the MAP of WT and ACE 10/10 mice was similar 110 ± 4 mmHg vs. 109 ± 3 mmHg respectively (p>0.05). However, when subjected to chronic Ang II infusions, the hypertensive response was blunted in ACE 10/10 mice (129 ± 6 mmHg) vs. WT (146 ± 5 mmHg; P<0.05). Also, intrarenal Ang II accumulation was lower in ACE10/10 mice (724 ± 81 fmol/g) vs. WT (1130 ± 105 fmol/g, p<0.05). In non-treated mice, intrarenal RAS components analysis revealed that the absence of ACE in ACE10/10 mice was accompanied by a significant reduction in AGT (0.41 ± 0.06) and increased AT1R expression (1.32 ± 0.05) when compared to WT (normalized to 1.00, p<0.05 in both instances). Importantly, after chronic Ang II infusions, AGT, ACE and AT1R expression increased in WT (1.36, 1.26 and 1.17 fold increase respectively compared to non-treated WT, p<0.05) but not in the ACE10/10 mice (1.19, 1.06, 0.89 fold increase respectively compared to non-treated ACE10/10, p>0.05). Conclusion: The blunted hypertension and Ang II accumulation of mice devoid of kidney ACE in response to Ang II infusions is associated with a failed induction of renal AGT and the AT1R.


2007 ◽  
Vol 292 (5) ◽  
pp. H2523-H2531 ◽  
Author(s):  
Steven J. Miller ◽  
Laura E. Norton ◽  
Michael P. Murphy ◽  
Michael C. Dalsing ◽  
Joseph L. Unthank

Recent clinical and animal studies have shown that collateral artery growth is impaired in the presence of vascular risk factors, including hypertension. Available evidence suggests that angiotensin-converting enzyme inhibitors (ACEI) promote collateral growth in both hypertensive humans and animals; however, the specific mechanisms are not established. This study evaluated the hypothesis that collateral growth impairment in hypertension is mediated by excess superoxide produced by NAD(P)H oxidase in response to stimulation of the ANG II type 1 receptor. After ileal artery ligation, mesenteric collateral growth did not occur in untreated, young, spontaneously hypertensive rats. Significant luminal expansion occurred in collaterals of spontaneously hypertensive rats treated with the superoxide dismutase mimetic tempol, the NAD(P)H oxidase inhibitor apocynin, and the ACEI captopril, but not ANG II type 1 (losartan) or type 2 (PD-123319) receptor blockers. The ACEI enalapril produced equivalent reduction of arterial pressure as captopril but did not promote luminal expansion. This suggests the effects of captopril on collateral growth might result from its antioxidant properties. RT-PCR demonstrated that ANG II type 1 receptor and angiotensinogen expression was reduced in collaterals of untreated rats. This local suppression of the renin angiotensin system provides a potential explanation for the lack of effect of enalapril and losartan on collateral growth. The results demonstrate the capability of antioxidant therapies, including captopril, to reverse impaired collateral artery growth and the novel finding that components of the local renin angiotensin system are naturally suppressed in collaterals.


1988 ◽  
Vol 254 (3) ◽  
pp. F351-F357 ◽  
Author(s):  
C. Fauth ◽  
B. Rossier ◽  
F. Roch-Ramel

The aim of this study was to test the hypothesis that the intrarenal renin-angiotensin system (RAS) modulates glomerular angiotensin II (ANG II) receptors. In one protocol ANG II receptors were measured 7 days after unilateral denervation of the left kidney in rats. There were 50% more receptors in the glomeruli from denervated compared with innervated kidneys (right, 1,037 +/- 108 vs. left, 1,556 +/- 143 fmol/mg; P less than 0.01), which was associated with a 63% reduction (P less than 0.01) in left renal vein renin. The differences in ANG II receptors between the left and right kidneys were no longer present when angiotensin-converting enzyme was inhibited with enalapril or when pharmacological amounts of ANG II (50 ng/min) were infused. In a second protocol, renal cortical renin content was raised in the left kidney by placing a 0.20-mm clip on the left renal artery (two-kidney, one-clip Goldblatt model). At 7 days, glomerular ANG II receptors were reduced by 72.3% in the clipped compared with the contralateral kidneys (right, 1,232 +/- 105 vs. left, 341 +/- 170 fmol/mg; P less than 0.01). The differences in ANG II receptors were no longer present after enalapril treatment. Pharmacological maneuvers that either blocked ANG II formation or increased circulating ANG II resulted in an equal number of ANG II receptors in the right and left kidneys. The data indicate that the intrarenal RAS modulates the density of glomerular ANG II receptors and is a more important receptor modulator than plasma ANG II.


2007 ◽  
Vol 293 (3) ◽  
pp. F839-F845 ◽  
Author(s):  
Liliana Monica Bivol ◽  
Rolf Kristian Berge ◽  
Bjarne Magnus Iversen

The tetradecythioacetic acid (TTA) is a modified fatty acid known to exhibit pleiotropic effects. First, we compared the effect of TTA on the blood pressure in spontaneously hypertensive rats (SHR) with two-kidney, one-clip (2K1C)-hypertensive rats. Second, we examined mechanisms involved in the blood pressure reduction. TTA had minor effect on systolic blood pressure (SBP) in young SHR up to 8 wk of age. In 2K1C we confirmed the blood pressure-lowering effect of TTA (SBP: 173 ± 4 before vs. 138 ± 3 mmHg after TTA, P < 0.001). No effect on SBP was seen in Wistar-Kyoto rat (WKY) controls. Plasma renin activity (PRA) was low in SHR and WKY controls and TTA did not change it. PRA decreased from 22.9 ± 1.3 to 16.2 ± 2.2 ng·ml−1·h−1 ( P = 0.02) in 2K1C. Plasma ANG II concentration declined from 101 ± 3 to 81 ± 5 fmol/l after TTA treatment ( P = 0.005). In the clipped kidney, tissue ANG I concentration decreased from 933 ± 68 to 518 ± 60 fmol/g tissue ( P = 0.001), and ANG II decreased from 527 ± 38 to 149 ± 21 fmol/g tissue ( P < 0.001) after TTA treatment. In the nonclipped kidney, TTA did not change ANG I and moderately reduced ANG II levels. The renal blood flow response to injection of ANG II into the nonclipped kidney was blunted compared with controls and normalized with TTA treatment (10 ± 2 before vs. 20 ± 2%, P < 0.001). The results indicate that TTA downregulates the renin-angiotensin system in high renin animals but has no effect in low renin models.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Chen ◽  
Bin Yu ◽  
Xinqi Guo ◽  
Hong Hua ◽  
Fang Cui ◽  
...  

Background and AimsPrevious studies have demonstrated the anti-hypertensive effect of chronic intermittent hypobaric hypoxia (CIHH) in hypertensive rats. The present study investigated the anti-hypertensive effect of CIHH in spontaneously hypertensive rats (SHR) and the role of the renin-angiotensin system (RAS) in anti-hypertensive effect of CIHH.MethodsFifteen-week-old male SHR and WKY rats were divided into four groups: the SHR without CIHH treatment (SHR-CON), the SHR with CIHH treatment (SHR-CIHH), the WKY without CIHH treatment (WKY-CON), and the WKY with CIHH treatment (WKY-CIHH) groups. The SHR-CIHH and WKY-CIHH rats underwent 35-days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h per day. Arterial blood pressure and heart rate were recorded by biotelemetry, and angiotensin (Ang) II, Ang1–7, interleukin (IL)-6, tumor necrosis factor-alpha (TNF)-α, and IL-10 in serum and the mesenteric arteries were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The microvessel tension recording technique was used to determine the contraction and relaxation of the mesenteric arteries. Hematoxylin and eosin and Masson’s staining were used to observe vascular morphology and fibrosis. Western blot was employed to detect the expression of the angiotensin-converting enzyme (ACE), ACE2, AT1, and Mas proteins in the mesenteric artery.ResultsThe biotelemetry result showed that CIHH decreased arterial blood pressure in SHR for 3–4 weeks (P &lt; 0.01). The ELISA and immunohistochemistry results showed that CIHH decreased Ang II, but increased Ang1–7 in serum and the mesenteric arteries of SHR. In the CIHH-treated SHR, IL-6 and TNF-α decreased in serum and the mesenteric arteries, and IL-10 increased in serum (P &lt; 0.05–0.01). The microvessel tension results revealed that CIHH inhibited vascular contraction with decreased Ang1–7 in the mesenteric arteries of SHR (P &lt; 0.05–0.01). The staining results revealed that CIHH significantly improved vascular remodeling and fibrosis in SHR. The western blot results demonstrated that CIHH upregulated expression of the ACE2 and Mas proteins, and downregulated expression of the ACE and AT1 proteins (P &lt; 0.05–0.01).ConclusionCIHH decreased high blood pressure in SHR, possibly by inhibiting RAS activity, downregulating the ACE-Ang II-AT1 axis and upregulating the ACE2-(Ang1-7)-Mas axis, which resulted in antagonized vascular remodeling and fibrosis, reduced inflammation, and enhanced vascular relaxation.


2020 ◽  
Vol 318 (4) ◽  
pp. R730-R742
Author(s):  
Mariana Rosso Melo ◽  
Silvia Gasparini ◽  
Elaine F. Silva ◽  
Marlusa Karlen-Amarante ◽  
Guilherme F. Speretta ◽  
...  

The two kidney-one clip (2K1C) renovascular hypertension depends on the renin-angiotensin system and sympathetic overactivity. The maintenance of 2K1C hypertension also depends on inputs from the carotid bodies (CB), which when activated stimulate the respiratory activity. In the present study, we investigated the importance of CB afferent activity for the ventilatory responses in 2K1C hypertensive rats and for phrenic and hypoglossal activities in in situ preparations of normotensive rats treated with angiotensin II. Silver clips were implanted around the left renal artery of male Holtzman rats (150 g) to induce renovascular hypertension. Six weeks after clipping, hypertensive 2K1C rats showed, in conscious state, elevated resting tidal volume and minute ventilation compared with the normotensive group. 2K1C rats also presented arterial alkalosis, urinary acidification, and amplified hypoxic ventilatory response. Carotid body removal (CBR), 2 wk before the experiments (4th week after clipping), significantly reduced arterial pressure and pulmonary ventilation in 2K1C rats but not in normotensive rats. Intra-arterial administration of angiotensin II in the in situ preparation of normotensive rats increased phrenic and hypoglossal activities, responses that were also reduced after CBR. Results show that renovascular hypertensive rats exhibit increased resting ventilation that depends on CB inputs. Similarly, angiotensin II increases phrenic and hypoglossal activities in in situ preparations of normotensive rats, responses that also depend on CB inputs. Results suggest that mechanisms that depend on CB inputs in renovascular hypertensive rats or during angiotensin II administration in normotensive animals increase respiratory drive.


2002 ◽  
Vol 283 (5) ◽  
pp. F1142-F1150 ◽  
Author(s):  
Patrick K. K. Leong ◽  
Li E. Yang ◽  
Niels-Henrik Holstein-Rathlou ◽  
Alicia A. McDonough

Acute hypertension inhibits proximal tubule (PT) sodium reabsorption. The resultant increase in NaCl delivery to the macula densa suppresses renin release. We tested whether the sustained pressure-induced inhibition of PT sodium reabsorption requires a renin-mediated decrease in ANG II levels. Plasma ANG II concentration of anesthesized Sprague-Dawley rats was clamped by simultaneous infusion of the ANG I-converting enzyme inhibitor captopril (12 μg/min) and ANG II (20 ng · kg−1 · min−1). Blood pressure was increased 50 mmHg for 20 min by arterial constriction ± ANG II clamp or by sham operation. This acute hypertension increased urine output and endogenous Li+clearance, and these responses were blunted 40–50% in ANG II clamped rats. Acute hypertension provoked a rapid redistribution of Na+/H+ exchanger isoform 3 (NHE3) out of apical brush-border membranes (21 ± 4% decrease of total NHE3 abundance) to endosomal/lysosomal membranes (16 ± 6% increase of total). In ANG II-clamped rats, acute hypertension also provoked disappearance of NHE3 from the apical membranes (27 ± 2% decrease of total), but NHE3 was shifted to membranes enriched in intermicrovillar cleft and dense apical tubules ( step 1) rather than endosomal/lysosomal membranes ( step 2). This difference was independently confirmed by confocal analysis. In contrast, the pressure-induced redistribution of Na+-Pi cotransporter type 2 was not altered by ANG II clamp. We conclude that the responses to acute hypertension, including diuresis and redistribution of PT NHE3 into intracellular membranes, require a responsive renin-angiotensin system and that the responses may be induced by the sustained increase in NaCl delivery to the macula densa during acute hypertension.


Sign in / Sign up

Export Citation Format

Share Document