scholarly journals Indices of Defective Autophagy in Whole Muscle and Lysosome Enriched Fractions From Aged D2-mdx Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Swathy Krishna ◽  
Hannah R. Spaulding ◽  
Tiffany S. Quindry ◽  
Matthew B. Hudson ◽  
John C. Quindry ◽  
...  

Duchenne muscular dystrophy (DMD) is a fatal, progressive muscle disease caused by the absence of functional dystrophin protein. Previous studies in mdx mice, a common DMD model, identified impaired autophagy with lysosomal insufficiency and impaired autophagosomal degradation as consequences of dystrophin deficiency. Thus, we hypothesized that lysosomal abundance would be decreased and degradation of autophagosomes would be impaired in muscles of D2-mdx mice. To test this hypothesis, diaphragm and gastrocnemius muscles from 11 month-old D2-mdx and DBA/2J (healthy) mice were collected. Whole muscle protein from diaphragm and gastrocnemius muscles, and protein from a cytosolic fraction (CF) and a lysosome-enriched fraction (LEF) from gastrocnemius muscles, were isolated and used for western blotting. Initiation of autophagy was not robustly activated in whole muscle protein from diaphragm and gastrocnemius, however, autophagosome formation markers were elevated in dystrophic muscles. Autophagosome degradation was impaired in D2-mdx diaphragms but appeared to be maintained in gastrocnemius muscles. To better understand this muscle-specific distinction, we investigated autophagic signaling in CFs and LEFs from gastrocnemius muscles. Within the LEF we discovered that the degradation of autophagosomes was similar between groups. Further, our data suggest an expanded, though impaired, lysosomal pool in dystrophic muscle. Notably, these data indicate a degree of muscle specificity as well as model specificity with regard to autophagic dysfunction in dystrophic muscles. Stimulation of autophagy in dystrophic muscles may hold promise for DMD patients as a potential therapeutic, however, it will be critical to choose the appropriate model and muscles that most closely recapitulate findings from human patients to further develop these therapeutics.

2019 ◽  
Vol 8 ◽  
pp. 204800401987958
Author(s):  
HR Spaulding ◽  
C Ballmann ◽  
JC Quindry ◽  
MB Hudson ◽  
JT Selsby

Background Duchenne muscular dystrophy is a muscle wasting disease caused by dystrophin gene mutations resulting in dysfunctional dystrophin protein. Autophagy, a proteolytic process, is impaired in dystrophic skeletal muscle though little is known about the effect of dystrophin deficiency on autophagy in cardiac muscle. We hypothesized that with disease progression autophagy would become increasingly dysfunctional based upon indirect autophagic markers. Methods Markers of autophagy were measured by western blot in 7-week-old and 17-month-old control (C57) and dystrophic (mdx) hearts. Results Counter to our hypothesis, markers of autophagy were similar between groups. Given these surprising results, two independent experiments were conducted using 14-month-old mdx mice or 10-month-old mdx/Utrn± mice, a more severe model of Duchenne muscular dystrophy. Data from these animals suggest increased autophagosome degradation. Conclusion Together these data suggest that autophagy is not impaired in the dystrophic myocardium as it is in dystrophic skeletal muscle and that disease progression and related injury is independent of autophagic dysfunction.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Clementina Sitzia ◽  
Andrea Farini ◽  
Federica Colleoni ◽  
Francesco Fortunato ◽  
Paola Razini ◽  
...  

Duchenne muscular dystrophy (DMD), the most common form of muscular dystrophy, is characterized by muscular wasting caused by dystrophin deficiency that ultimately ends in force reduction and premature death. In addition to primary genetic defect, several mechanisms contribute to DMD pathogenesis. Recently, antioxidant supplementation was shown to be effective in the treatment of multiple diseases including muscular dystrophy. Different mechanisms were hypothesized such as reduced hydroxyl radicals, nuclear factor-κB deactivation, and NO protection from inactivation. Following these promising evidences, we investigated the effect of the administration of a mix of dietary natural polyphenols (ProAbe) on dystrophic mdx mice in terms of muscular architecture and functionality. We observed a reduction of muscle fibrosis deposition and myofiber necrosis together with an amelioration of vascularization. More importantly, the recovery of the morphological features of dystrophic muscle leads to an improvement of the endurance of treated dystrophic mice. Our data confirmed that ProAbe-based diet may represent a strategy to coadjuvate the treatment of DMD.


2019 ◽  
Author(s):  
Arnaud Ferry ◽  
Julien Messéant ◽  
Ara Parlakian ◽  
Mégane Lemaitre ◽  
Pauline Roy ◽  
...  

AbstractDuchenne muscular dystrophy (DMD) is a severe neuromuscular disease, caused by dystrophin deficiency. Desmin is like dystrophin associated to costameric structures bridging sarcomeres to extracellular matrix that are involved in force transmission and skeletal muscle integrity. In the present study, we wanted to gain further insight into the roles of desmin which expression is increased in the muscle from the mouse Mdx DMD model. We show that a deletion of the desmin gene (Des) in Mdx mice (DKO, Mdx:desmin-/-) induces a marked worsening of the weakness (reduced maximal force production) as compared to Mdx mice. Fragility (higher susceptibility to contraction-induced injury) was also aggravated and fatigue resistance was reduced in DKO mice. Moreover, in contrast to Mdx mice, the DKO mice did not undergo a muscle hypertrophy because of smaller and less numerous fibers, with reduced percentage of centronucleated fibres. Interestingly, Desmin cDNA transfer with adeno-associated virus in 1-month-old DKO mice and newborn Mdx mice improved muscle weakness. Overall, desmin plays important and beneficial roles on muscle performance, fragility and remodelling in dystrophic Mdx mice.


2020 ◽  
Author(s):  
Marielle Saclier ◽  
Sabrina Ben Larbi ◽  
Eugénie Moulin ◽  
Rémi Mounier ◽  
Bénédicte Chazaud ◽  
...  

SummaryDuchenne Muscular Dystrophy is a genetic muscle disease characterized by chronic inflammation and fibrosis, which is mediated by a pro-fibrotic macrophage population expressing pro-inflammatory markers. The aim of this study was to characterize cellular events leading to the alteration of macrophage properties, and to modulate macrophage inflammatory status using the gaseous mediator H2S. We first analyzed the relationship between myofibers and macrophages in the mdx mouse model of Duchenne Muscular Dystrophy using coculture experiments. We showed that normal myofibers derived from mdx mice strongly skewed the polarization of resting macrophages towards a pro-inflammatory phenotype. Treatment of mdx mice with NaHS, an H2S donor, reduced the number of pro-inflammatory macrophages in skeletal muscle, which was associated with a decrease in the number of nuclei per fiber, a reduction of myofiber branching and a reduced fibrosis. These results identify an interplay between myofibers and macrophages where dystrophic myofibers contribute to the maintenance of a highly inflammatory environment that skews the macrophage status, which in turn favors myofiber damage, myofiber branching and fibrosis establishment. They also identify H2S donors as a potential therapeutic strategy to improve dystrophic muscle phenotype by modulating macrophage inflammatory status.


2021 ◽  
Vol 134 (18) ◽  
Author(s):  
Marielle Saclier ◽  
Sabrina Ben Larbi ◽  
Ha My Ly ◽  
Eugénie Moulin ◽  
Rémi Mounier ◽  
...  

ABSTRACT Duchenne muscular dystrophy is a genetic muscle disease characterized by chronic inflammation and fibrosis mediated by a pro-fibrotic macrophage population expressing pro-inflammatory markers. Our aim was to characterize cellular events leading to the alteration of macrophage properties and to modulate macrophage inflammatory status using the gaseous mediator hydrogen sulfide (H2S). Using co-culture experiments, we first showed that myofibers derived from mdx mice strongly skewed the polarization of resting macrophages towards a pro-inflammatory phenotype. Treatment of mdx mice with NaHS, an H2S donor, reduced the number of pro-inflammatory macrophages in skeletal muscle, which was associated with a decreased number of nuclei per fiber, as well as reduced myofiber branching and fibrosis. Finally, we established the metabolic sensor AMP-activated protein kinase (AMPK) as a critical NaHS target in muscle macrophages. These results identify an interplay between myofibers and macrophages where dystrophic myofibers contribute to the maintenance of a highly inflammatory environment sustaining a pro-inflammatory macrophage status, which in turn favors myofiber damage, myofiber branching and establishment of fibrosis. Our results also highlight the use of H2S donors as a potential therapeutic strategy to improve the dystrophic muscle phenotype by dampening chronic inflammation. This article has an associated First Person interview with the first author of the paper.


1990 ◽  
Vol 268 (3) ◽  
pp. 795-797 ◽  
Author(s):  
P A MacLennan ◽  
R H T Edwards

mdx mice lack the protein dystrophin, the absence of which causes Duchenne muscular dystrophy in humans. To examine how mdx mice maintain muscle mass despite dystrophin deficiency, we measured protein turnover rates in muscles of mdx and wild-type (C57BL/10) mice in vivo. At all ages studied, rates of muscle protein synthesis and degradation were higher in mdx than in C57BL/10 mice.


2002 ◽  
Vol 283 (3) ◽  
pp. C773-C784 ◽  
Author(s):  
Karl Rouger ◽  
Martine Le Cunff ◽  
Marja Steenman ◽  
Marie-Claude Potier ◽  
Nathalie Gibelin ◽  
...  

The mdx mouse is a model for human Duchenne muscular dystrophy (DMD), an X-linked degenerative disease of skeletal muscle tissue characterized by the absence of the dystrophin protein. The mdx mice display a much milder phenotype than DMD patients. After the first week of life when all mdx muscles evolve like muscles of young DMD patients, mdx hindlimb muscles substantially compensate for the lack of dystrophin, whereas mdx diaphragm muscle becomes progressively affected by the disease. We used cDNA microarrays to compare the expression profile of 1,082 genes, previously selected by a subtractive method, in control and mdx hindlimb and diaphragm muscles at 12 time points over the first year of the mouse life. We determined that 1) the dystrophin gene defect induced marked expression remodeling of 112 genes encoding proteins implicated in diverse muscle cell functions and 2) two-thirds of the observed transcriptomal anomalies differed between adult mdx hindlimb and diaphragm muscles. Our results showed that neither mdx diaphram muscle nor mdx hindlimb muscles evolve entirely like the human DMD muscles. This finding should be taken under consideration for the interpretation of future experiments using mdx mice as a model for therapeutic assays.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Fabrizio Rinaldi ◽  
Yu Zhang ◽  
Ricardo Mondragon-Gonzalez ◽  
Jeffrey Harvey ◽  
Rita C. R. Perlingeiro

2012 ◽  
Vol 113 (5) ◽  
pp. 808-816 ◽  
Author(s):  
Su Xu ◽  
Stephen J. P. Pratt ◽  
Espen E. Spangenburg ◽  
Richard M. Lovering

Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy (1H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic ( mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo 1H MRS regarding skeletal muscle injury.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 648
Author(s):  
Andrea L. Reid ◽  
Matthew S. Alexander

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.


Sign in / Sign up

Export Citation Format

Share Document