scholarly journals Differential Autophagy Response in Men and Women After Muscle Damage

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui-Ying Luk ◽  
Casey Appell ◽  
Danielle E. Levitt ◽  
Nigel C. Jiwan ◽  
Jakob L. Vingren

Following muscle damage, autophagy is crucial for muscle regeneration. Hormones (e.g., testosterone, cortisol) regulate this process and sex differences in autophagic flux exist in the basal state. However, to date, no study has examined the effect of a transient hormonal response following eccentric exercise-induced muscle damage (EE) between untrained young men and women. Untrained men (n = 8, 22 ± 3 years) and women (n = 8, 19 ± 1 year) completed two sessions of 80 unilateral maximal eccentric knee extensions followed by either upper body resistance exercise (RE; designed to induce a hormonal response; EE + RE) or a time-matched rest period (20 min; EE + REST). Vastus lateralis biopsy samples were collected before (BL), and 12 h, and 24 h after RE/REST. Gene and protein expression levels of selective markers for autophagic initiation signaling, phagophore initiation, and elongation/sequestration were determined. Basal markers of autophagy were not different between sexes. For EE + RE, although initiation signaling (FOXO3) and autophagy-promoting (BECN1) genes were greater (p < 0.0001; 12.4-fold, p = 0.0010; 10.5-fold, respectively) for women than men, autophagic flux (LC3-II/LC3-I protein ratio) did not change for women and was lower (p < 0.0001 3.0-fold) than men. Furthermore, regardless of hormonal changes, LC3-I and LC3-II protein content decreased (p = 0.0090; 0.547-fold, p = 0.0410; 0.307-fold, respectively) for men suggesting increased LC3-I lipidation and autophagosome degradation whereas LC3-I protein content increased (p = 0.0360; 1.485-fold) for women suggesting decreased LC3-I lipidation. Collectively, our findings demonstrated basal autophagy was not different between men and women, did not change after EE alone, and was promoted with the acute hormonal increase after RE only in men but not in women. Thus, the autophagy response to moderate muscle damage is promoted by RE-induced hormonal changes in men only.

2019 ◽  
Vol 317 (2) ◽  
pp. E421-E432 ◽  
Author(s):  
Hui-Ying Luk ◽  
Danielle E. Levitt ◽  
James C. Boyett ◽  
Sharon Rojas ◽  
Shawn M. Flader ◽  
...  

The purpose of this work was to determine the effect of resistance exercise (RE)-induced hormonal changes on the satellite cell (SC) myogenic state in response to muscle damage. Untrained men ( n = 10, 22 ± 3 yr) and women ( n = 9, 21 ± 4 yr) completed 2 sessions of 80 unilateral maximal eccentric knee extensions followed by either an upper body RE protocol (EX) or a 20-min rest (CON). Muscle samples were collected and analyzed for protein content of Pax7, MyoD, myogenin, cyclin D1, and p21 before (PRE), 12 h, and 24 h after the session was completed. Serum testosterone, growth hormone, cortisol, and myoglobin concentrations were analyzed at PRE, post-damage, immediately after (IP), and 15, 30, and 60 min after the session was completed. Testosterone was significantly ( P < 0.05) higher immediately after the session in EX vs. CON for men. A significant time  × sex × condition interaction was found for MyoD with an increase in EX (men) and CON (women) at 12 h. A significant time × condition interaction was found for Pax7, with a decrease in EX and increase in CON at 24 h. A significant time effect was found for myogenin, p21, and cyclin D1. Myogenin and p21 were increased at 12 and 24 h, and cyclin D1 was increased at 12 h. These results suggest that the acute RE-induced hormonal response can be important for men to promote SC proliferation after muscle damage but had no effect in women. Markers of SC differentiation appeared unaffected by the hormonal response but increased in response to muscle damage.


2001 ◽  
Vol 91 (4) ◽  
pp. 1669-1678 ◽  
Author(s):  
N. Stupka ◽  
M. A. Tarnopolsky ◽  
N. J. Yardley ◽  
S. M. Phillips

Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male ( n = 8) and female ( n = 8) subjects performed two bouts ( bout 1and bout 2), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After bout 2, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times ( P < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after bout 1 ( P< 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after bout 2 vs. rest and bout 1 ( P < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after bout 1 and bout 2 ( P < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts ( P < 0.05), with a greater increase after bout 2. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.


2001 ◽  
Vol 90 (6) ◽  
pp. 2070-2074 ◽  
Author(s):  
T. A. Trappe ◽  
D. M. Lindquist ◽  
J. A. Carrithers

We examined the size of the four muscles of the quadriceps femoris in young and old men and women to assess whether the vastus lateralis is an appropriate surrogate for the quadriceps femoris in human studies of aging skeletal muscle. Ten young (24 ± 2 yr) and ten old (79 ± 7 yr) sedentary individuals underwent magnetic resonance imaging of the quadriceps femoris after 60 min of supine rest. Volume (cm3) and average cross-sectional area (CSA, cm2) of the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), and the total quadriceps femoris were decreased ( P < 0.05) in older compared with younger women and men. However, percentage of the total quadriceps femoris taken up by each muscle was similar ( P > 0.05) between young and old (RF: 10 ± 0.3 vs. 11 ± 0.4; VL: 33 ± 1 vs. 33 ± 1; VI: 31 ± 1 vs. 31 ± 0.4; VM: 26 ± 1 vs. 25 ± 1%). These results suggest that each of the four muscles of the quadriceps femoris atrophy similarly in aging men and women. Our data support the use of vastus lateralis tissue to represent the quadriceps femoris muscle in aging research.


Healthcare ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 71 ◽  
Author(s):  
Alice Gibson ◽  
Janet Franklin ◽  
Andrea Pattinson ◽  
Zilvia Cheng ◽  
Samir Samman ◽  
...  

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1627 ◽  
Author(s):  
Paulo Gentil ◽  
James Steele ◽  
Maria C. Pereira ◽  
Rafael P.M. Castanheira ◽  
Antonio Paoli ◽  
...  

Resistance training (RT) offers benefits to both men and women. However, the studies about the differences between men and women in response to an RT program are not conclusive and few data are available about upper body strength response. The aim of this study was to compare elbow flexor strength gains in men and women after 10 weeks of RT. Forty-four college-aged men (22.63 ± 2.34 years) and forty-seven college-aged women (21.62 ± 2.96 years) participated in the study. The RT program was performed two days a week for 10 weeks. Before and after the training period, peak torque (PT) of the elbow flexors was measured with an isokinetic dynamometer. PT values were higher in men in comparison to women in pre- and post-tests (p< 0.01). Both males and females significantly increased elbow flexor strength (p< 0.05); however, strength changes did not differ between genders after 10 weeks of RT program (11.61 and 11.76% for men and women, respectively;p> 0.05). Effect sizes were 0.57 and 0.56 for men and women, respectively. In conclusion, the present study suggests that men and women have a similar upper body strength response to RT.


1996 ◽  
Vol 270 (2) ◽  
pp. E259-E264 ◽  
Author(s):  
M. D. Jensen ◽  
P. E. Cryer ◽  
C. M. Johnson ◽  
M. J. Murray

Upper-body and lower-body adipocytes respond differently to physiological catecholamines in vitro. It is not known whether this is true in vivo or whether gender differences exist in the regional adipose tissue responses to epinephrine. These studies were therefore conducted to examine free fatty acid (FFA) release ([3H]palmitate) from lower-body (leg), splanchnic, and upper-body adipose tissue in normal-weight adult men (n = 8) and women (n = 7). In response to intravenous epinephrine (10 ng.kg-1.min-1), palmitate release increased (P < 0.01) in both men (168 +/- 10 to 221 +/- 15 mumol/min) and women (177 +/- 12 to 234 +/- 18 mumol/min). Basal leg palmitate release was similar in women and men (16.8 +/- 2.9 and 12.4 +/- 1.3 mumol/min, P = not significant) but doubled (P < 0.01) in response to epinephrine in men and was virtually unchanged in women. Splanchnic palmitate release increased (P < 0.05) in men (n = 6) but not in women (n = 6), whereas nonsplanchnic upper-body palmitate release increased more in women than in men. Upper-body (splanchnic and nonsplanchnic) palmitate release increased (P < 0.05) in both men and women in response to epinephrine. In summary, lower-body adipose tissue FFA release increased in response to epinephrine in men but not women, whereas upper-body palmitate release increased in both groups. These findings are consistent with some in vitro findings and suggest that catecholamine action may play a role in determining gender-based differences in body fat distribution.


2006 ◽  
Vol 290 (4) ◽  
pp. E757-E758 ◽  
Author(s):  
Abram Katz

Glycogenin is the self-glycosylating protein primer that initiates glycogen granule formation. To examine the role of this protein during glycogen resynthesis, eight male subjects exercised to exhaustion on a cycle ergometer at 75% V̇o2 max followed by five 30-s sprints at maximal capacity to further deplete glycogen stores. During recovery, carbohydrate (75 g/h) was supplied to promote rapid glycogen repletion, and muscle biopsies were obtained from the vastus lateralis at 0, 30, 120, and 300 min postexercise. At time 0, no free (deglycosylated) glycogenin was detected in muscle, indicating that all glycogenin was complexed to carbohydrate. Glycogenin activity, a measure of the glycosylating ability of the protein, increased at 30 min and remained elevated for the remainder of the study. Quantitative RT-PCR showed elevated glycogenin mRNA at 120 min followed by increases in protein levels at 300 min. Glycogenin specific activity (glycogenin activity/relative protein content) was also elevated at 120 min. Proglycogen increased at all time points, with the highest rate of resynthesis occurring between 0 and 30 min. In comparison, macroglycogen levels did not significantly increase until 300 min postexercise. Together, these results show that, during recovery from prolonged exhaustive exercise, glycogenin mRNA and protein content and activity increase in muscle. This may facilitate rapid glycogen resynthesis by providing the glycogenin backbone of proglycogen, the major component of glycogen synthesized in early recovery.


2000 ◽  
Vol 89 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Ian Janssen ◽  
Steven B. Heymsfield ◽  
ZiMian Wang ◽  
Robert Ross

We employed a whole body magnetic resonance imaging protocol to examine the influence of age, gender, body weight, and height on skeletal muscle (SM) mass and distribution in a large and heterogeneous sample of 468 men and women. Men had significantly ( P < 0.001) more SM in comparison to women in both absolute terms (33.0 vs. 21.0 kg) and relative to body mass (38.4 vs. 30.6%). The gender differences were greater in the upper (40%) than lower (33%) body ( P < 0.01). We observed a reduction in relative SM mass starting in the third decade; however, a noticeable decrease in absolute SM mass was not observed until the end of the fifth decade. This decrease was primarily attributed to a decrease in lower body SM. Weight and height explained ∼50% of the variance in SM mass in men and women. Although a linear relationship existed between SM and height, the relationship between SM and body weight was curvilinear because the contribution of SM to weight gain decreased with increasing body weight. These findings indicate that men have more SM than women and that these gender differences are greater in the upper body. Independent of gender, aging is associated with a decrease in SM mass that is explained, in large measure, by a decrease in lower body SM occurring after the fifth decade.


2015 ◽  
Vol 308 (6) ◽  
pp. E470-E481 ◽  
Author(s):  
William Apró ◽  
Marcus Moberg ◽  
D. Lee Hamilton ◽  
Björn Ekblom ◽  
Gerrit van Hall ◽  
...  

Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling. This hypothesis was tested in eight trained male subjects who in randomized order performed either resistance exercise only (R) or interval cycling followed by resistance exercise (ER). Biopsies taken from the vastus lateralis before and after endurance exercise and repeatedly after resistance exercise were assessed for glycogen content, kinase activity, protein phosphorylation, and gene expression. Mixed muscle fractional synthetic rate was measured at rest and during 3 h of recovery using the stable isotope technique. In ER, AMPK activity was elevated immediately after both endurance and resistance exercise (∼90%, P < 0.05) but was unchanged in R. Thr389 phosphorylation of S6K1 was increased severalfold immediately after exercise ( P < 0.05) in both trials and increased further throughout recovery. After 90 and 180 min recovery, S6K1 activity was elevated (∼55 and ∼110%, respectively, P < 0.05) and eukaryotic elongation factor 2 phosphorylation was reduced (∼55%, P < 0.05) with no difference between trials. In contrast, markers for protein catabolism were differently influenced by the two modes of exercise; ER induced a significant increase in gene and protein expression of MuRF1 ( P < 0.05), which was not observed following R exercise only. In conclusion, cycling-induced elevation in AMPK activity does not inhibit mTOR complex 1 signaling after subsequent resistance exercise but may instead interfere with the hypertrophic response by influencing key components in protein breakdown.


Sign in / Sign up

Export Citation Format

Share Document