interval cycling
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. W. Jones ◽  
L. Eddens ◽  
J. Kupusarevic ◽  
D. C. M. Simoes ◽  
M. J. W. Furber ◽  
...  

AbstractThis study examined whether intensity of endurance stimulus within a concurrent training paradigm influenced the phosphorylation of signaling proteins associated with the mTOR and AMPK networks. Eight male cyclists completed (1) resistance exercise (RES), 6 × 8 squats at 80% 1-RM; (2) resistance exercise and moderate intensity cycling of 40 min at 65% V̇O2peak, (RES + MIC); (3) resistance exercise and high intensity interval cycling of 40 min with 6 alternating 3 min intervals of 85 and 45% V̇O2peak (RES + HIIC), in a cross-over design. Muscle biopsies were collected at rest and 3 h post-RES. There was a main effect of condition for mTORS2448 (p = 0.043), with a greater response in the RES + MIC relative to RES condition (p = 0.033). There was a main effect of condition for AMPKα2T172 (p = 0.041), with a greater response in RES + MIC, relative to both RES + HIIC (p = 0.026) and RES (p = 0.046). There were no other condition effects for the remaining protein kinases assessed (p > 0.05). These data do not support a molecular interference effect in cyclists under controlled conditions. There was no intensity-dependent regulation of AMPK, nor differential activation of anabolism with the manipulation of endurance exercise intensity.


2021 ◽  
pp. 003151252110073
Author(s):  
Lore Metz ◽  
Laurie Isacco ◽  
Maud Miguet ◽  
Pauline Genin ◽  
David Thivel ◽  
...  

Immersed exercise has been shown to induce higher energy expenditure and no difference or increase in food intake compared with similar exercise on land. In this study, we compared the effects of acute high-intensity cycling performed on land versus when immersed on subsequent energy intake (EI), appetite sensations and perceived exertion (RPE) in healthy men. Ten participants in a postprandial condition completed three experimental visits in a randomized order: a control condition (CONT); a high-intensity interval cycling exercise performed on land (HIIE-L) and the same exercise while immersed in water (HIIE-A) with a similar targeted heart rate. We observed no difference in energy and macronutrient intake and in area under the curve (AUC) for appetite sensations between sessions. The RPE at the end of HIIE-L was negatively correlated with EI (r=–0.67; p < 0.05), AUC for hunger (r=–0.86, p < 0.01), desire to eat (r=–0.78, p < 0.05) and prospective food consumption (r=–0.86, p < 0.01). Conversely, the RPE at the end of HIIE-L was positively correlated with AUC for fullness (r = 0.76 , p < 0.05). No such correlations were observed for HIIE-A. The present study was the first to observe that immersion did not influence EI after HIIE cycling, but immersion blunted the relationship between session RPE and subsequent energy intake and appetite sensations relative to HIIE on land.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcus Moberg ◽  
William Apró ◽  
Igor Cervenka ◽  
Björn Ekblom ◽  
Gerrit van Hall ◽  
...  

AbstractThis study examined acute molecular responses to concurrent exercise involving different muscles. Eight men participated in a randomized crossover-trial with two sessions, one where they performed interval cycling followed by upper body resistance exercise (ER-Arm), and one with upper body resistance exercise only (R-Arm). Biopsies were taken from the triceps prior to and immediately, 90- and 180-min following exercise. Immediately after resistance exercise, the elevation in S6K1 activity was smaller and the 4E-BP1:eIF4E interaction greater in ER-Arm, but this acute attenuation disappeared during recovery. The protein synthetic rate in triceps was greater following exercise than at rest, with no difference between trials. The level of PGC-1α1 mRNA increased to greater extent in ER-Arm than R-Arm after 90 min of recovery, as was PGC-1α4 mRNA after both 90 and 180 min. Levels of MuRF-1 mRNA was unchanged in R-Arm, but elevated during recovery in ER-Arm, whereas MAFbx mRNA levels increased slightly in both trials. RNA sequencing in a subgroup of subjects revealed 862 differently expressed genes with ER-Arm versus R-Arm during recovery. These findings suggest that leg cycling prior to arm resistance exercise causes systemic changes that potentiate induction of specific genes in the triceps, without compromising the anabolic response.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2223
Author(s):  
Gerard McMahon ◽  
Aaron Thornbury

Carbohydrate (CHO) ingestion may improve intermittent sprint performance in repeated sprint efforts ≤15 s. Yet, evidence for its efficacy on sprint interval durations ~30 s is lacking. The purpose of this study was to investigate the effects of CHO ingestion on maximal sprint interval exercise. Fifteen (n = 15) recreational athletes (13/2 males/females, age 22 ± 2 years; height 176 ± 11 cm; mass 76.8 ± 11.3 kg) volunteered for this randomised, double-blind, placebo-controlled, crossover design. Participants completed two experimental trials (performed 10-days apart) involving the ingestion of an 8% CHO solution or a flavour and appearance-matched placebo (PLA) solution (5 mL/kg/bw), immediately before exercise, and preceding the second interval of four × 30 s bouts of repeated maximal sprint efforts (separated by 3.5 min of passive recovery). Peak and mean power (W) output progressively decreased during the repeated sprints (main effect of time, p < 0.0001), but there were no differences between CHO and PLA during any of the sprints (p > 0.05 for condition main effect and condition × time interaction). Physiological responses (blood lactate, heart rate, oxygen consumption, respiratory exchange ratio and RPE) were also unaltered by CHO ingestion. In conclusion, CHO ingestion does not enhance performance or modulate physiological responses during intermittent maximal, sprint cycling.


Author(s):  
Meir Magal ◽  
Nicole C. Liette ◽  
Shannon K. Crowley ◽  
Jay R. Hoffman ◽  
Kathleen S. Thomas

Author(s):  
Zivile Pranskuniene ◽  
Egle Belousoviene ◽  
Neringa Baranauskiene ◽  
Nerijus Eimantas ◽  
Egle Vaitkaitiene ◽  
...  

The natural components of the pomegranate fruit may provide additional benefits for endothelial function and microcirculation. It was hypothesized that supplementation with pomegranate extract might improve glycocalyx properties and microcirculation during acute high-intensity sprint interval cycling exercise. Eighteen healthy and recreationally active male volunteers 22–28 years of age were recruited randomly to the experimental and control groups. The experimental group was supplemented with pomegranate extract 20 mL (720 mg phenolic compounds) for two weeks. At the beginning and end of the study, the participants completed a high-intensity sprint interval cycling-exercise protocol. The microcirculation flow and density parameters, glycocalyx markers, systemic hemodynamics, lactate, and glucose concentration were evaluated before and after the initial and repeated (after 2 weeks supplementation) exercise bouts. There were no significant differences in the microcirculation or glycocalyx over the course of the study (p < 0.05). The lactate concentration was significantly higher in both groups after the initial and repeated exercise bouts, and were significantly higher in the experimental group compared to the control group after the repeated bout: 13.2 (11.9–14.8) vs. 10.3 (9.3–12.7) mmol/L, p = 0.017. Two weeks of supplementation with pomegranate extract does not influence changes in the microcirculation and glycocalyx during acute high-intensity sprint interval cycling-exercise. Although an unexplained rise in blood lactate concentration was observed.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Wenxue Yuan ◽  
Haibin Liu ◽  
Zhilin Luan ◽  
Zhinan Zhao ◽  
Bingyi Shen

Background. Cardiovascular disease (CVD) contributes to be one of the leading causes of death in the population worldwide. Carotid arterial stiffness and local hemodynamics are associated with the occurrence and development of CVD. Therefore, understanding the alterations of human carotid arterial stiffness and hemodynamics is of great clinical value in the prevention and treatment of CVD. Objective. In this study, we aimed to investigate the acute effect of high-intensity interval cycling (HIIC) on carotid arterial stiffness and hemodynamics in sedentary. Methods. Thirty volunteered healthy sedentary males were enrolled in this study. HIIC intervention (3 sets, 20 s per set) was performed individually. A color Doppler ultrasound was applied to detect the images of the arterial inner diameters and center-line velocity waveforms at the right common carotid artery at different time points (at rest, 3 min, 15 min, and 30 min) after HIIC. Synchronously, electronic manometer was used to measure the systolic and diastolic pressures at the left brachial artery. Results. Arterial stiffness increased and arterial diameter decreased significantly after acute HIIC. The variation in stiffness persisted for 30 min, at least 15 min longer than the change in diameter. At 3 min after exercise, maximum and mean wall shear stresses (WSS) increased and minimum WSS was also higher than the resting value. At 30 min after exercise, WSS returned to the baseline, but oscillating shear index was still higher than the resting value. Conclusions. In summary, arterial stiffness and hemodynamics changed significantly not only at 3 min but also at 30 min after acute HIIC.


Sign in / Sign up

Export Citation Format

Share Document