scholarly journals Metabolic Profiling Analysis of Liver in Landes Geese During the Formation of Fatty Liver via GC-TOF/MS

2022 ◽  
Vol 12 ◽  
Author(s):  
Yuzhu Yu ◽  
Wentao Lyu ◽  
Zixian Fu ◽  
Qian Fan ◽  
Yingping Xiao ◽  
...  

Fatty liver production results from the process of overfeeding geese, inducing a dramatic increase in de novo liver lipogenesis. To investigate the alteration of liver metabolites by overfeeding, especially lipid metabolites, and the potential pathways causing these changes, 60 Landes geese at 65 days old were raised in three groups with 20 geese per group, namely, the D0 group (free from gavage), D7 group (overfeeding for 7 days), and D25 group (overfeeding for 25 days). At 90 days old, segments of liver tissue were collected from 10 geese of each group for gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) analysis. A large number of endogenous molecules in the livers of geese were altered dramatically by overfeeding. In the livers of overfed geese, the level of oleic acid was observed to continuously increase, while the levels of phenylalanine, methyl phosphate, sulfuric acid, and 3-hydroxybenzaldehyde were decreased. The most significantly different metabolites were enriched in amino acid, lipid, and nucleotide metabolism pathways. The present study further supports the idea that Landes geese efficiently produce fatty liver, and potential biomarkers and disturbed metabolic pathways during the process of forming fatty liver were identified. In conclusion, this study might provide some insights into the underlying mechanisms of fatty liver formation.

2020 ◽  
Vol 11 ◽  
Author(s):  
Yujie Gong ◽  
Wentao Lyu ◽  
Xingfen Shi ◽  
Xiaoting Zou ◽  
Lizhi Lu ◽  
...  

During the process of fatty liver production by overfeeding, the levels of endogenous metabolites in the serum of geese would change dramatically. This study investigated the effects of overfeeding on serum metabolism of Landes geese and the underlying mechanisms using a metabolomics approach. Sixty Landes geese of the same age were randomly divided into the following three groups with 20 replicates in each group: D0 group (free from gavage); D7 group (overfeeding for 7 days); D25 group (overfeeding for 25 days). At the end of the experiment, 10 geese of similar weight from each group were selected for slaughter and sampling. The results showed that overfeeding significantly increased the body weight and the liver weight of geese. Serum enzymatic activities and serum lipid levels were significantly enhanced following overfeeding. Gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) was employed to explore the serum metabolic patterns, and to identify potential contributors to the formation of fatty liver and the correlated metabolic pathways. Relative to overfeeding for 7 days, a large number of endogenous molecules in serum of geese overfed for 25 days were altered. Continuous elevated levels of pyruvic acid, alanine, proline and beta-glycerophosphoric acid and reduced lactic acid level were observed in the serum of overfed geese. Pathway exploration found that the most of significantly different metabolites were involved in amino acids, carbohydrate and lipid metabolism. The present study exhibited the efficient capability of Landes geese to produce fatty liver, identified potential biomarkers and disturbed metabolic pathways in liver steatosis. These findings might reveal the underlying mechanisms of fatty liver formation and provide some theoretical basis for the diagnosis and treatment of liver diseases.


Author(s):  
Yujie Gong ◽  
Wentao Lyu ◽  
Xingfen Shi ◽  
Xiaoting Zou ◽  
Lizhi Lu ◽  
...  

Abstract Background:During the process of fatty liver production by overfeeding, the levels of endogenous metabolites in the serumof geese would change dramatically. This study investigated the effects of overfeeding on serum metabolism of Landes geese and the underlying mechanisms using a metabolomics approach.Results:Sixty Landes geese of the same age were randomly divided into the following 3 groups: D0 group (free from gavage); D7 group (overfeeding for 7 days); D25 group (overfeeding for 25 days). The results showed that overfeeding significantly increased the body weight and the liver weight of geese. Serum enzymatic activities and serum lipid levels were significantly enhanced following overfeeding.Gas chromatography time-of-flight/massspectrometry (GC-TOF/MS) was employed to explore the serum metabolic patterns, and to identify potential contributors to the formation of fatty liver and the correlatedmetabolic pathways. A large number of endogenous molecules in serum were altered, especially at the late stage of overfeeding (7 days to 25 days). Continuous elevated levels of pyruvic acid, alanine, proline and beta-glycerophosphoric acid and reduced lactic acid level were observed in the serum of overfed geese. Pathway exploration found that the most of significantly different metabolites were involved in various amino acids metabolism, carbohydrate metabolismand lipid metabolism.Conclusions: These findings pinpoint specific metabolite changes and identify potential biomarkers for early diagnosis of fatty liver disease, as well as provide insights into the perturbation of metabolic pathways involved in fatty liver formation.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhaoyan Zhang ◽  
Liang Yang ◽  
Xiaoyan Huang ◽  
Yue Gao

Abstract Background The side effects caused by Polygoni Multiflori Radix (PMR) and Polygoni Multiflori Radix Praeparata (PMRP) have often appeared globally. There is no research on the changes of endogenous metabolites among PMR- and PMRP-treated rats. The aim of this study was to evaluate the varying metabolomic effects between PMR- and PMRP-treated rats. We tried to discover relevant differences in biomarkers and endogenous metabolic pathways. Methods Hematoxylin and eosin staining and immunohistochemistry staining were performed to find pathological changes. Biochemical indicators were also measured, one-way analysis of variance with Dunnett’s multiple comparison test was used for biochemical indicators comparison among various groups. Metabolomics analysis based on ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS) was performed to find the changes in metabolic biomarkers. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to reveal group clustering trend, evaluate and maximize the discrimination between the two groups. MetaboAnalyst 4.0 was performed to find and confirm the pathways. Results PMR extracts exhibited slight hepatotoxic effects on the liver by increasing aspartate and alanine aminotransferase levels. Twenty-nine metabolites were identified as biomarkers, belonging to five pathways, including alpha-linolenic acid metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, arginine and proline metabolism, and primary bile acid biosynthesis. Conclusion This study provided a comprehensive description of metabolomic changes between PMR- and PMRP-treated rats. The underlying mechanisms require further research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lianying Guo ◽  
Jun Kuang ◽  
Yu Zhuang ◽  
Jialin Jiang ◽  
Yan Shi ◽  
...  

Fatty liver hemorrhage syndrome (FLHS), a nutritional and metabolic disease that frequently occurs in laying hens, causes serious losses to the poultry industry. Nowadays, the traditional clinical diagnosis of FLHS still has its limitations. Therefore, searching for some metabolic biomarkers and elucidating the metabolic pathway in vivo are useful for the diagnosis and prevention of FLHS. In the present study, a model of FLHS in laying hens induced by feeding a high-energy, low-protein diet was established. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) was used to analyze the metabolites in serum at days 40 and 80. The result showed that, in total, 40 differential metabolites closely related to the occurrence and development of FLHS were screened and identified, which were mainly associated with lipid metabolism, amino acid metabolism, and energy metabolism pathway disorders. Further investigation of differential metabolites showed 10 potential biomarkers such as 3-hydroxybutyric acid, oleic acid, palmitoleic acid, and glutamate were possessed of high diagnostic values by analyzing receiver operating characteristic (ROC) curves. In conclusion, this study showed that the metabolomic method based on GC-TOF-MS can be used in the clinical diagnosis of FLHS in laying hens and provide potential biomarkers for early risk evaluation of FLHS and further insights into FLHS development.


2014 ◽  
Vol 63 (9) ◽  
pp. 1143-1147 ◽  
Author(s):  
Katherine Woods ◽  
David Beighton ◽  
John L. Klein

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides rapid, accurate and cost-effective identification of a range of bacteria and is rapidly changing the face of routine diagnostic microbiology. However, certain groups of bacteria, for example streptococci (in particular viridans or non-haemolytic streptococci), are less reliably identified by this method. We studied the performance of MALDI-TOF MS for identification of the ‘Streptococcus anginosus group’ (SAG) to species level. In total, 116 stored bacteraemia isolates identified by conventional methods as belonging to the SAG were analysed by MALDI-TOF MS. Partial 16S rRNA gene sequencing, supplemented with sialidase activity testing, was performed on all isolates to provide ‘gold standard’ identification against which to compare MALDI-TOF MS performance. Overall, 100 % of isolates were correctly identified to the genus level and 93.1 % to the species level by MALDI-TOF MS. However, only 77.6 % were correctly identified to the genus level and 59.5 % to the species level by a MALDI-TOF MS direct transfer method alone. Use of a rapid in situ extraction method significantly improved identification rates when compared with the direct transfer method (P<0.001). We recommend routine use of this method to reduce the number of time-consuming full extractions required for identification of this group of bacteria by MALDI-TOF MS in the routine diagnostic laboratory. Only 22 % (1/9) of Streptococcus intermedius isolates were reliably identified by MALDI-TOF MS to the species level, even after full extraction. MALDI-TOF MS reliably identifies S. anginosus and Streptococcus constellatus to the species level but does not reliably identify S. intermedius.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Reyaz ur Rasool ◽  
Bilal Rah ◽  
Hina Amin ◽  
Debasis Nayak ◽  
Souneek Chakraborty ◽  
...  

Abstract The eukaryotic translation initiation factor 4E (eIF4E) is considered as a key survival protein involved in cell cycle progression, transformation and apoptosis resistance. Herein, we demonstrate that medicinal plant derivative 3-AWA (from Withaferin A) suppressed the proliferation and metastasis of CaP cells through abrogation of eIF4E activation and expression via c-FLIP dependent mechanism. This translational attenuation prevents the de novo synthesis of major players of metastatic cascades viz. c-FLIP, c-Myc and cyclin D1. Moreover, the suppression of c-FLIP due to inhibition of translation initiation complex by 3-AWA enhanced FAS trafficking, BID and caspase 8 cleavage. Further ectopically restored c-Myc and GFP-HRas mediated activation of eIF4E was reduced by 3-AWA in transformed NIH3T3 cells. Detailed underlying mechanisms revealed that 3-AWA inhibited Ras-Mnk and PI3-AKT-mTOR, two major pathways through which eIF4E converges upon eIF4F hub. In addition to in vitro studies, we confirmed that 3-AWA efficiently suppressed tumor growth and metastasis in different mouse models. Given that 3-AWA inhibits c-FLIP through abrogation of translation initiation by co-targeting mTOR and Mnk-eIF4E, it (3-AWA) can be exploited as a lead pharmacophore for promising anti-cancer therapeutic development.


Sign in / Sign up

Export Citation Format

Share Document