landes geese
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yuzhu Yu ◽  
Wentao Lyu ◽  
Zixian Fu ◽  
Qian Fan ◽  
Yingping Xiao ◽  
...  

Fatty liver production results from the process of overfeeding geese, inducing a dramatic increase in de novo liver lipogenesis. To investigate the alteration of liver metabolites by overfeeding, especially lipid metabolites, and the potential pathways causing these changes, 60 Landes geese at 65 days old were raised in three groups with 20 geese per group, namely, the D0 group (free from gavage), D7 group (overfeeding for 7 days), and D25 group (overfeeding for 25 days). At 90 days old, segments of liver tissue were collected from 10 geese of each group for gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) analysis. A large number of endogenous molecules in the livers of geese were altered dramatically by overfeeding. In the livers of overfed geese, the level of oleic acid was observed to continuously increase, while the levels of phenylalanine, methyl phosphate, sulfuric acid, and 3-hydroxybenzaldehyde were decreased. The most significantly different metabolites were enriched in amino acid, lipid, and nucleotide metabolism pathways. The present study further supports the idea that Landes geese efficiently produce fatty liver, and potential biomarkers and disturbed metabolic pathways during the process of forming fatty liver were identified. In conclusion, this study might provide some insights into the underlying mechanisms of fatty liver formation.


Author(s):  
Ling Luo ◽  
Xinglong Yu ◽  
Xiang Qu ◽  
Fei Zhao ◽  
Yan Ding ◽  
...  

A goose hemorrhagic polyomavirus (GHPV) outbreak occurred in a Goose Farm in Hunan, China, between January and July 2021. Approximately 1,500 breeding goose died, and hatching rates dropped from the previous 85% to about 50% in this outbreak. GHPV HUN-01, isolated from the liver of infected Landes geese, shared a close evolutionary relationship with the Toulouse Goose 2000 and 14234 strain, isolated from geese in France and Hungary. The isolation of GHPV from the livers of dead embryos also demonstrates that the virus can be transmitted vertically. In conclusion, clinical and laboratory diagnostics of the diseased geese in this outbreak were consistent with GHPV being the causative agent. We learned that this is the first time that GHPV has been isolated from geese in mainland China.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingxia Ran ◽  
Huaxuan Huang ◽  
Bo Hu ◽  
Shenqiang Hu ◽  
Jiwei Hu ◽  
...  

Landes geese and Sichuan White geese are two important genetic materials for commercial goose breeding. However, the differences in the male reproductive capacity between these two breeds and the potential molecular mechanisms and associated key genes have not been reported to date. The present study compared the testicular histology and mRNA–long non-coding RNA (lncRNA) expression patterns to reveal the differences in male reproductive performance between Sichuan White geese and Landes geese, as well as to explore the underlying molecular mechanisms. Histological results showed that the testicular organ index, semen volume, and long diameter of seminiferous tubules of Landes geese were significantly larger than those of Sichuan White geese. Analyses of mRNA-lncRNA expression profile showed that compared with Sichuan White geese, a total of 462 differentially expressed mRNAs (DEGs) (173 up-regulated and 289 down-regulated) and 329 differentially expressed lncRNAs (DE lncRNAs) (280 up-regulated, 49 down-regulated) were identified in Landes geese. Among these DEGs, there were 10 spermatogenesis-related and highly expressed (FPKM > 10) DEGs. Except for SEPP1, all of these DEGs were significantly up-regulated in the testes of Landes geese. Functional enrichment analysis indicated that the pathway related to metabolism progress and phosphoinositol signal is vitally responsible for differences in male reproductive performance between Landes geese and Sichuan White geese. These results show that compared with Sichuan White geese, the spermatogenesis in the testis of Landes geese was more active, which may be mainly related to the inositol phosphate signal. These data contribute to a better understanding of the mechanisms underlying different male reproductive performances between Landes geese and Sichuan White geese. This knowledge might eventually provide a theoretical basis for improving male reproductive performance in geese.


Author(s):  
Hongzhi Wang ◽  
Xudong Li ◽  
Dongxue Wang ◽  
Chong Li ◽  
Yuanyuan Wang ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Yujie Gong ◽  
Wentao Lyu ◽  
Xingfen Shi ◽  
Xiaoting Zou ◽  
Lizhi Lu ◽  
...  

During the process of fatty liver production by overfeeding, the levels of endogenous metabolites in the serum of geese would change dramatically. This study investigated the effects of overfeeding on serum metabolism of Landes geese and the underlying mechanisms using a metabolomics approach. Sixty Landes geese of the same age were randomly divided into the following three groups with 20 replicates in each group: D0 group (free from gavage); D7 group (overfeeding for 7 days); D25 group (overfeeding for 25 days). At the end of the experiment, 10 geese of similar weight from each group were selected for slaughter and sampling. The results showed that overfeeding significantly increased the body weight and the liver weight of geese. Serum enzymatic activities and serum lipid levels were significantly enhanced following overfeeding. Gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) was employed to explore the serum metabolic patterns, and to identify potential contributors to the formation of fatty liver and the correlated metabolic pathways. Relative to overfeeding for 7 days, a large number of endogenous molecules in serum of geese overfed for 25 days were altered. Continuous elevated levels of pyruvic acid, alanine, proline and beta-glycerophosphoric acid and reduced lactic acid level were observed in the serum of overfed geese. Pathway exploration found that the most of significantly different metabolites were involved in amino acids, carbohydrate and lipid metabolism. The present study exhibited the efficient capability of Landes geese to produce fatty liver, identified potential biomarkers and disturbed metabolic pathways in liver steatosis. These findings might reveal the underlying mechanisms of fatty liver formation and provide some theoretical basis for the diagnosis and treatment of liver diseases.


2020 ◽  
Vol 33 (12) ◽  
pp. 1957-1964
Author(s):  
Xu Liu ◽  
Peng Li ◽  
Changqing He ◽  
Xiangyong Qu ◽  
Songchang Guo

Objective: The aim of this study was to compare overfeeding performance, fatty acid composition, blood chemistry, enzymes and genes expression overfed Xupu and Landes geese.Methods: Sixty male Xupu geese (80 d) and Landes geese (80 d) were selected. After a period of one-week of pre-overfeeding, Xupu and Landes geese were overfed three meals of 550 and 350 g/d, respectively, of a high-carbohydrate diet in the first week of the overfeeding period. The next week, geese were given four meals of 1,200 and 850 g/d, respectively, over 8 to 14 d. Finally, geese were given five meals of 1,600 and 1,350 g/d, respectively, for the last two weeks.Results: After overfeeding for 28 d: Compared with Landes geese, Xupu geese liver weight and liver-to-body weight ratio decreased (p<0.05), while final weight, slaughter weight, total weight gain, abdominal fat weight, and feed-to-liver weight ratio increased (p<0.05). The levels of elaidic acid (C18:1t9), oleic acid (C18:1n-9), eicosenoic acid, and arachidonic acid in the liver of Xupu geese significantly increased (p<0.05), and the levels of myristic acid and stearic acid significantly decreased (p<0.05), while methyleicosanoate acid significantly increased (p<0.05). Xupu geese had higher plasma concentrations of triglyceride and very low density lipoprotein cholesterol (p<0.05), and decreased activities of alanine aminotransferase, aspartate aminotransferase, and lipase (LPS) (p<0.05). Landes geese had higher LPS activity (p<0.05), but lower cholinesterase activity (p<0.05) when compared with Xupu geese. The mRNA expression levels of fatty acid dehydrogenase (FADS) gene, elongase of longchain fatty acid 1 (ELOVL1) gene, ELOVL5, and acyl-Co A: cholesterol acyltransferase 2 (ACAT2) gene were significantly upregulated (p<0.05) in Landes goose when compared with Xupu geese.Conclusion: This study demonstrates that the liver production performance of Landes geese was better than that of Xupu geese to some extent, which may be closely related to LPS activity, as well as the expression of FADS, ELOVL1, ELOVL5, and ACAT2.


Author(s):  
Yujie Gong ◽  
Wentao Lyu ◽  
Xingfen Shi ◽  
Xiaoting Zou ◽  
Lizhi Lu ◽  
...  

Abstract Background:During the process of fatty liver production by overfeeding, the levels of endogenous metabolites in the serumof geese would change dramatically. This study investigated the effects of overfeeding on serum metabolism of Landes geese and the underlying mechanisms using a metabolomics approach.Results:Sixty Landes geese of the same age were randomly divided into the following 3 groups: D0 group (free from gavage); D7 group (overfeeding for 7 days); D25 group (overfeeding for 25 days). The results showed that overfeeding significantly increased the body weight and the liver weight of geese. Serum enzymatic activities and serum lipid levels were significantly enhanced following overfeeding.Gas chromatography time-of-flight/massspectrometry (GC-TOF/MS) was employed to explore the serum metabolic patterns, and to identify potential contributors to the formation of fatty liver and the correlatedmetabolic pathways. A large number of endogenous molecules in serum were altered, especially at the late stage of overfeeding (7 days to 25 days). Continuous elevated levels of pyruvic acid, alanine, proline and beta-glycerophosphoric acid and reduced lactic acid level were observed in the serum of overfed geese. Pathway exploration found that the most of significantly different metabolites were involved in various amino acids metabolism, carbohydrate metabolismand lipid metabolism.Conclusions: These findings pinpoint specific metabolite changes and identify potential biomarkers for early diagnosis of fatty liver disease, as well as provide insights into the perturbation of metabolic pathways involved in fatty liver formation.


2018 ◽  
Vol 58 (10) ◽  
pp. 1876 ◽  
Author(s):  
Junwang Tang ◽  
Maxue Lu ◽  
Qianqian Fang ◽  
Feizhen Lu ◽  
Rongyi Shao ◽  
...  

In geese, overfeeding induces hepatic steatosis and makes the liver functions enhanced. Aluminosilicate absorbs toxins created by moulds in animal feeds and enhances nutrient absorption. In the present study, the effects of hydrated sodium calcium aluminosilicate (Improved HSCAS, Jumpstar) on the growth performance, fatty liver, serum parameters, and intestinal morphology of overfed Landes geese were evaluated. The study included two Control groups, a non-overfed Control (Control I) and an overfed Control (Control II), as well as a treatment group. The results showed that compared with the Control I group, liver weight, relative liver weight, abdominal fat weight, intestinal fat weight, villus height, total cholesterol, very low density lipoproteins, lipoprotein lipase, aspartate aminotransferase, IgM, and IgG in the HSCAS treatment group all significantly increased (P < 0.05) at Days 10 and 20. The villus height/crypt depth, triglycerides, cholinesterase, alanine aminotransferase, and serum IgA levels were higher than those in the Control I (P < 0.05) after 20 days of overfeeding. Compared with the Control II group, the relative abdominal fat weight, relative intestinal fat weight, and crypt depth in the HSCAS treatment group were significantly increased (P < 0.05) after 10 days of overfeeding, whereas villus height/crypt depth decreased (P < 0.05). Relative liver weight and IgA were higher in HACAS group after 20 days’ overfeeding (P < 0.05). HSCAS treatment also led to higher cholinesterase, very low density lipoproteins and decreased lipase, alanine aminotransferase (P > 0.05), and decreased aspartate aminotransferase levels than those in the Control II group (P < 0.05). In conclusion, HSCAS treatment had a beneficial effect on fatty liver production, intestinal development, and serum parameters in overfed Landes geese, which could enhance the health status of these geese.


Sign in / Sign up

Export Citation Format

Share Document