scholarly journals A Serum Metabolic Profiling Analysis During the Formation of Fatty Liver in Landes Geese via GC-TOF/MS

2020 ◽  
Vol 11 ◽  
Author(s):  
Yujie Gong ◽  
Wentao Lyu ◽  
Xingfen Shi ◽  
Xiaoting Zou ◽  
Lizhi Lu ◽  
...  

During the process of fatty liver production by overfeeding, the levels of endogenous metabolites in the serum of geese would change dramatically. This study investigated the effects of overfeeding on serum metabolism of Landes geese and the underlying mechanisms using a metabolomics approach. Sixty Landes geese of the same age were randomly divided into the following three groups with 20 replicates in each group: D0 group (free from gavage); D7 group (overfeeding for 7 days); D25 group (overfeeding for 25 days). At the end of the experiment, 10 geese of similar weight from each group were selected for slaughter and sampling. The results showed that overfeeding significantly increased the body weight and the liver weight of geese. Serum enzymatic activities and serum lipid levels were significantly enhanced following overfeeding. Gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) was employed to explore the serum metabolic patterns, and to identify potential contributors to the formation of fatty liver and the correlated metabolic pathways. Relative to overfeeding for 7 days, a large number of endogenous molecules in serum of geese overfed for 25 days were altered. Continuous elevated levels of pyruvic acid, alanine, proline and beta-glycerophosphoric acid and reduced lactic acid level were observed in the serum of overfed geese. Pathway exploration found that the most of significantly different metabolites were involved in amino acids, carbohydrate and lipid metabolism. The present study exhibited the efficient capability of Landes geese to produce fatty liver, identified potential biomarkers and disturbed metabolic pathways in liver steatosis. These findings might reveal the underlying mechanisms of fatty liver formation and provide some theoretical basis for the diagnosis and treatment of liver diseases.

Author(s):  
Yujie Gong ◽  
Wentao Lyu ◽  
Xingfen Shi ◽  
Xiaoting Zou ◽  
Lizhi Lu ◽  
...  

Abstract Background:During the process of fatty liver production by overfeeding, the levels of endogenous metabolites in the serumof geese would change dramatically. This study investigated the effects of overfeeding on serum metabolism of Landes geese and the underlying mechanisms using a metabolomics approach.Results:Sixty Landes geese of the same age were randomly divided into the following 3 groups: D0 group (free from gavage); D7 group (overfeeding for 7 days); D25 group (overfeeding for 25 days). The results showed that overfeeding significantly increased the body weight and the liver weight of geese. Serum enzymatic activities and serum lipid levels were significantly enhanced following overfeeding.Gas chromatography time-of-flight/massspectrometry (GC-TOF/MS) was employed to explore the serum metabolic patterns, and to identify potential contributors to the formation of fatty liver and the correlatedmetabolic pathways. A large number of endogenous molecules in serum were altered, especially at the late stage of overfeeding (7 days to 25 days). Continuous elevated levels of pyruvic acid, alanine, proline and beta-glycerophosphoric acid and reduced lactic acid level were observed in the serum of overfed geese. Pathway exploration found that the most of significantly different metabolites were involved in various amino acids metabolism, carbohydrate metabolismand lipid metabolism.Conclusions: These findings pinpoint specific metabolite changes and identify potential biomarkers for early diagnosis of fatty liver disease, as well as provide insights into the perturbation of metabolic pathways involved in fatty liver formation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yuzhu Yu ◽  
Wentao Lyu ◽  
Zixian Fu ◽  
Qian Fan ◽  
Yingping Xiao ◽  
...  

Fatty liver production results from the process of overfeeding geese, inducing a dramatic increase in de novo liver lipogenesis. To investigate the alteration of liver metabolites by overfeeding, especially lipid metabolites, and the potential pathways causing these changes, 60 Landes geese at 65 days old were raised in three groups with 20 geese per group, namely, the D0 group (free from gavage), D7 group (overfeeding for 7 days), and D25 group (overfeeding for 25 days). At 90 days old, segments of liver tissue were collected from 10 geese of each group for gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) analysis. A large number of endogenous molecules in the livers of geese were altered dramatically by overfeeding. In the livers of overfed geese, the level of oleic acid was observed to continuously increase, while the levels of phenylalanine, methyl phosphate, sulfuric acid, and 3-hydroxybenzaldehyde were decreased. The most significantly different metabolites were enriched in amino acid, lipid, and nucleotide metabolism pathways. The present study further supports the idea that Landes geese efficiently produce fatty liver, and potential biomarkers and disturbed metabolic pathways during the process of forming fatty liver were identified. In conclusion, this study might provide some insights into the underlying mechanisms of fatty liver formation.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhaoyan Zhang ◽  
Liang Yang ◽  
Xiaoyan Huang ◽  
Yue Gao

Abstract Background The side effects caused by Polygoni Multiflori Radix (PMR) and Polygoni Multiflori Radix Praeparata (PMRP) have often appeared globally. There is no research on the changes of endogenous metabolites among PMR- and PMRP-treated rats. The aim of this study was to evaluate the varying metabolomic effects between PMR- and PMRP-treated rats. We tried to discover relevant differences in biomarkers and endogenous metabolic pathways. Methods Hematoxylin and eosin staining and immunohistochemistry staining were performed to find pathological changes. Biochemical indicators were also measured, one-way analysis of variance with Dunnett’s multiple comparison test was used for biochemical indicators comparison among various groups. Metabolomics analysis based on ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS) was performed to find the changes in metabolic biomarkers. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to reveal group clustering trend, evaluate and maximize the discrimination between the two groups. MetaboAnalyst 4.0 was performed to find and confirm the pathways. Results PMR extracts exhibited slight hepatotoxic effects on the liver by increasing aspartate and alanine aminotransferase levels. Twenty-nine metabolites were identified as biomarkers, belonging to five pathways, including alpha-linolenic acid metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, arginine and proline metabolism, and primary bile acid biosynthesis. Conclusion This study provided a comprehensive description of metabolomic changes between PMR- and PMRP-treated rats. The underlying mechanisms require further research.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yanyan Xu ◽  
Yiwei Zhao ◽  
Jiabin Xie ◽  
Xue Sheng ◽  
Yubo Li ◽  
...  

Psoraleae Fructus is the dry and mature fruit of leguminous plant Psoralea corylifolia L., with the activity of warming kidney and enhancing yang, warming spleen, and other effects. However, large doses can cause liver and kidney toxicity. Therefore, it is necessary to evaluate the toxicity of Psoraleae Fructus systematically. Although traditional biochemical indicators and pathological tests have been used to evaluate the safety of drug, these methods lack sensitivity and specificity, so a fast and sensitive analytical method is urgently needed. In this study, an ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method was used to analyze the metabolic profiles of rat plasma. The changes of metabolites in plasma samples were detected by partial least squares-discriminant analysis (PLS-DA). Compared with the control group, after 7 days of administration, the pathological sections showed liver and kidney toxicity, and the metabolic trend was changed. Finally, 13 potential biomarkers related to the toxicity of Psoraleae Fructus were screened. The metabolic pathways involved were glycerol phospholipids metabolism, amino acid metabolism, energy metabolism, and so forth. The discovery of these biomarkers laid a foundation for better explaining the hepatotoxicity and nephrotoxicity of Psoraleae Fructus and provided a guarantee for its safety evaluation.


2020 ◽  
Vol 64 (2) ◽  
pp. 77-90 ◽  
Author(s):  
Lucia Kořínková ◽  
Martina Holubová ◽  
Barbora Neprašová ◽  
Lucie Hrubá ◽  
Veronika Pražienková ◽  
...  

Lack of leptin production in ob/ob mice results in obesity and prediabetes that could be partly reversed by leptin supplementation. In the hypothalamus, leptin supports the production of prolactin-releasing peptide (PrRP), an anorexigenic neuropeptide synthesized and active in the brain. In our recent studies, the palmitoylated PrRP analog palm11-PrRP31 showed a central anorexigenic effect after peripheral administration. This study investigates whether PrRP could compensate for the deficient leptin in ob/ob mice. In two separate experiments, palm11-PrRP31 (5 mg/kg) and leptin (5 or 10 μg/kg) were administered subcutaneously twice daily for 2 or 8 weeks to 8- (younger) or 16-(older) week-old ob/ob mice, respectively, either separately or in combination. The body weight decreasing effect of palm11-PrRP31 in both younger and older ob/ob mice was significantly powered by a subthreshold leptin dose, the combined effect could be then considered synergistic. Leptin and palm11-PrRP31 also synergistically lowered liver weight and blood glucose in younger ob/ob mice. Reduced liver weight was linked to decreased mRNA expression of lipogenic enzymes. In the hypothalamus of older ob/ob mice, two main leptin anorexigenic signaling pathways, namely, Janus kinase, signal transducer and activator of transcription-3 activation and AMP-activated protein kinase de-activation, were induced by leptin, palm11-PrRP31, and their combination. Thus, palm11-PrRP31 could partially compensate for leptin deficiency in ob/ob mice. In conclusion, the results demonstrate a synergistic effect of leptin and our lipidized palm11-PrRP31 analog.


2018 ◽  
Vol 5 (10) ◽  
pp. 180759
Author(s):  
L. J. Zhu ◽  
S. S. Sun ◽  
Y. X. Hu ◽  
Y. F. Liu

To explore metabolism mechanism of paeoniflorin in the liver and further understand intact metabolism process of paeoniflorin, a rapid, convenient and effective assay is described using ultra-performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). The strategy was confirmed in the following primary processes: firstly, different concentration of paeoniflorin, rat liver microsomes, coenzymes and different incubated conditions were optimized to build a biotransformation model of rat liver microsomes in vitro by high performance liquid chromatography with diode array detection (HPLC-DAD); secondly, the metabolites of paeoniflorin in rat liver microsomes were detected and screened using UPLC-Q-TOF-MS/MS by comparing the total ion chromatogram (TIC) of the experimental group with those of control groups; finally, the molecular formulae and corresponding chemical structures of paeoniflorin metabolites were identified by comparing the MS and MS/MS spectra with the self-constructed database and simulation software. Based on this analytical strategy, 20 metabolites of paeoniflorin were found and 6 metabolites (including four new compounds) were tentatively identified. It was shown that hydrolysis and oxidation were the major metabolic pathways of paeoniflorin in rat liver microsomes, and the main metabolic sites were the structures of pinane and the ester bond. These findings were significant for a better understanding of the metabolism of paeoniflorin in rat liver microsomes and the proposed metabolic pathways of paeoniflorin might provide fundamental support for the further research in the pharmacological mechanism of Paeoniae Radix Rubra (PRR).


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hyuck Joon Kwon ◽  
Yoshihiro Ohmiya

Prechondrogenic condensation is a critical step for skeletal pattern formation. Recent studies reported that ATP oscillations play an essential role in prechondrogenic condensation. However, the molecular mechanism to underlie ATP oscillations remains poorly understood. In the present study, it was investigated how changes in metabolites are implicated in ATP oscillations during chondrogenesis by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). CE-TOF-MS detected 93 cationic and 109 anionic compounds derived from known metabolic pathways. 15 cationic and 18 anionic compounds revealed significant change between peak and trough of ATP oscillations. These results implicate that glycolysis, mitochondrial respiration and uronic acid pathway oscillate in phase with ATP oscillations, while PPRP and nucleotides synthesis pathways oscillate in antiphase with ATP oscillations. This suggests that the ATP-producing glycolysis and mitochondrial respiration oscillate in antiphase with the ATP-consuming PPRP/nucleotide synthesis pathway during chondrogenesis.


2018 ◽  
Vol 58 (10) ◽  
pp. 1876 ◽  
Author(s):  
Junwang Tang ◽  
Maxue Lu ◽  
Qianqian Fang ◽  
Feizhen Lu ◽  
Rongyi Shao ◽  
...  

In geese, overfeeding induces hepatic steatosis and makes the liver functions enhanced. Aluminosilicate absorbs toxins created by moulds in animal feeds and enhances nutrient absorption. In the present study, the effects of hydrated sodium calcium aluminosilicate (Improved HSCAS, Jumpstar) on the growth performance, fatty liver, serum parameters, and intestinal morphology of overfed Landes geese were evaluated. The study included two Control groups, a non-overfed Control (Control I) and an overfed Control (Control II), as well as a treatment group. The results showed that compared with the Control I group, liver weight, relative liver weight, abdominal fat weight, intestinal fat weight, villus height, total cholesterol, very low density lipoproteins, lipoprotein lipase, aspartate aminotransferase, IgM, and IgG in the HSCAS treatment group all significantly increased (P < 0.05) at Days 10 and 20. The villus height/crypt depth, triglycerides, cholinesterase, alanine aminotransferase, and serum IgA levels were higher than those in the Control I (P < 0.05) after 20 days of overfeeding. Compared with the Control II group, the relative abdominal fat weight, relative intestinal fat weight, and crypt depth in the HSCAS treatment group were significantly increased (P < 0.05) after 10 days of overfeeding, whereas villus height/crypt depth decreased (P < 0.05). Relative liver weight and IgA were higher in HACAS group after 20 days’ overfeeding (P < 0.05). HSCAS treatment also led to higher cholinesterase, very low density lipoproteins and decreased lipase, alanine aminotransferase (P > 0.05), and decreased aspartate aminotransferase levels than those in the Control II group (P < 0.05). In conclusion, HSCAS treatment had a beneficial effect on fatty liver production, intestinal development, and serum parameters in overfed Landes geese, which could enhance the health status of these geese.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shaobo Li ◽  
Jing Lu ◽  
Geng Gu ◽  
Wenkun Bai ◽  
Yafen Ye ◽  
...  

BackgroundThe simultaneous assessment of visceral adiposity and muscle mass might be useful to monitor the risk of non-alcoholic fatty liver disease (NAFLD) progression in large population. We aimed to investigate the value of serum creatinine-to-cystatin C ratio (CCR) in evaluating these two parameters and predicting liver steatosis and fibrosis.Methods154 overweight/obese inpatients (49 males, 105 females) scheduled for bariatric surgery and 49 non-overweight/obese volunteers (18 males, 31 females) responded to the hospital advertisement were involved in the cross-sectional study. Liver steatosis and fibrosis were diagnosed with transient elastography (TE). The psoas muscle area (PMA) and visceral fat area (VFA) were measured using magnetic resonance imaging.ResultsThe body mass index, insulin resistance, and lipid profiles showed significant differences between the CCR tertiles. Multiple regression analyses revealed that the CCR was significantly associated with the controlled attenuation parameter (β = −0.30, P = 0.006 in males; β = −0.19, P = 0.017 in females) and liver stiffness measurements in males (β = −0.246, P = 0.044). A low CCR was associated with moderate-to-severe steatosis (P &lt; 0.001), significant liver fibrosis (P &lt; 0.01), and excellent predictive power for these two conditions (P &lt; 0.01). The CCR had a negative correlation with the VFA/PMA ratio (r = −0.584, P &lt; 0.001 in males; r = −0.569, P &lt; 0.001 in females).ConclusionsThe CCR is a serum marker for muscle-adjusted visceral fat mass, and a low CCR is associated with an increased risk of progressive NAFLD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lianying Guo ◽  
Jun Kuang ◽  
Yu Zhuang ◽  
Jialin Jiang ◽  
Yan Shi ◽  
...  

Fatty liver hemorrhage syndrome (FLHS), a nutritional and metabolic disease that frequently occurs in laying hens, causes serious losses to the poultry industry. Nowadays, the traditional clinical diagnosis of FLHS still has its limitations. Therefore, searching for some metabolic biomarkers and elucidating the metabolic pathway in vivo are useful for the diagnosis and prevention of FLHS. In the present study, a model of FLHS in laying hens induced by feeding a high-energy, low-protein diet was established. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) was used to analyze the metabolites in serum at days 40 and 80. The result showed that, in total, 40 differential metabolites closely related to the occurrence and development of FLHS were screened and identified, which were mainly associated with lipid metabolism, amino acid metabolism, and energy metabolism pathway disorders. Further investigation of differential metabolites showed 10 potential biomarkers such as 3-hydroxybutyric acid, oleic acid, palmitoleic acid, and glutamate were possessed of high diagnostic values by analyzing receiver operating characteristic (ROC) curves. In conclusion, this study showed that the metabolomic method based on GC-TOF-MS can be used in the clinical diagnosis of FLHS in laying hens and provide potential biomarkers for early risk evaluation of FLHS and further insights into FLHS development.


Sign in / Sign up

Export Citation Format

Share Document