scholarly journals Mercury-Tolerant Ensifer medicae Strains Display High Mercuric Reductase Activity and a Protective Effect on Nitrogen Fixation in Medicago truncatula Nodules Under Mercury Stress

2021 ◽  
Vol 11 ◽  
Author(s):  
Gabriela Arregui ◽  
Pablo Hipólito ◽  
Beatriz Pallol ◽  
Victoria Lara-Dampier ◽  
Diego García-Rodríguez ◽  
...  

Mercury (Hg) is extremely toxic for all living organisms. Hg-tolerant symbiotic rhizobia have the potential to increase legume tolerance, and to our knowledge, the mechanisms underlying Hg tolerance in rhizobia have not been investigated to date. Rhizobial strains of Ensifer medicae, Rhizobium leguminosarum bv. trifolii and Bradyrhizobium canariense previously isolated from severely Hg-contaminated soils showed different levels of Hg tolerance. The ability of the strains to reduce mercury Hg2+ to Hg0, a volatile and less toxic form of mercury, was assessed using a Hg volatilization assay. In general, tolerant strains displayed high mercuric reductase activity, which appeared to be inducible in some strains when grown at a sub-lethal HgCl2 concentration. A strong correlation between Hg tolerance and mercuric reductase activity was observed for E. medicae strains, whereas this was not the case for the B. canariense strains, suggesting that additional Hg tolerance mechanisms could be playing a role in B. canariense. Transcript abundance from merA, the gene that encodes mercuric reductase, was quantified in tolerant and sensitive E. medicae and R. leguminosarum strains. Tolerant strains presented higher merA expression than sensitive ones, and an increase in transcript abundance was observed for some strains when bacteria were grown in the presence of a sub-lethal HgCl2 concentration. These results suggest a regulation of mercuric reductase in rhizobia. Expression of merA genes and mercuric reductase activity were confirmed in Medicago truncatula nodules formed by a sensitive or a tolerant E. medicae strain. Transcript accumulation in nodules formed by the tolerant strain increased when Hg stress was applied, while a significant decrease in expression occurred upon stress application in nodules formed by the Hg-sensitive strain. The effect of Hg stress on nitrogen fixation was evaluated, and in our experimental conditions, nitrogenase activity was not affected in nodules formed by the tolerant strain, while a significant decrease in activity was observed in nodules elicited by the Hg-sensitive bacteria. Our results suggest that the combination of tolerant legumes with tolerant rhizobia constitutes a potentially powerful tool in the bioremediation of Hg-contaminated soils.

1979 ◽  
Vol 25 (3) ◽  
pp. 298-301 ◽  
Author(s):  
Ilona Barabás ◽  
Tibor Sik

In two out of three pleiotropic mutants of Rhizobium meliloti, defective in nitrate reductase induced by amino acid utilization in vegetative bacteria and in symbiotic nitrogen fixation, nitrogenase activity could be restored completely by purines and partially by the amino acids L-glutamate, L-aspartate, L-glutamine, and L-asparagine. The compounds restoring effectiveness in nitrogen fixation did not restore nitrate reductase activity in vegetative bacteria. The restoration of effectiveness supports our earlier conclusion that the mutation is not in the structural gene for a suggested common subunit of nitrogenase and nitrate reductase.


1978 ◽  
Vol 29 (5) ◽  
pp. 951 ◽  
Author(s):  
JJ Ruegg ◽  
AM Alston

Seasonal and diurnal variation of nitrogenase activity in Medicago truncatula Gaertn. was measured by means of the acetylene reduction assay on plants grown in pots. In a glasshouse set at 20°C, the seasonal pattern of acetylene reduction (AR) activity was closely correlated with dry weight and photosynthetic area. Short-term fluctuations in AR activity were mainly associated with irradiance. Measurements made of the diurnal variation of AR activity showed that rates of AR at noon were 10–60% (average 33%) higher than the mean daily rates. Effects of defoliation and shading gave further evidence for the importance of light and recent photosynthate for nitrogen fixation in root nodules of legumes. Values for acetylene reduction integrated over time were highly correlated with the total amount of nitrogen in the plant. The molar ratio of acetylene reduced to nitrogen accumulated by the plants at the end of the experiment was 1.2 : 1. The significance of this value is discussed. Multiple use of the same plant material to study the time course of nitrogen fixation by the AR assay was found to be feasible under certain conditions.


2021 ◽  
Vol 3 ◽  
Author(s):  
Mariana Sotelo ◽  
Ana Claudia Ureta ◽  
Socorro Muñoz ◽  
Juan Sanjuán ◽  
Jorge Monza ◽  
...  

Biological nitrogen fixation by the Rhizobium-legume symbiosis allows the conversion of atmospheric nitrogen into ammonia within root nodules mediated by the nitrogenase enzyme. Nitrogenase activity results in the evolution of hydrogen as a result of a side reaction intrinsic to the activity of this enzyme. Some rhizobia, and also other nitrogen fixers, induce a NiFe uptake hydrogenase (Hup) to recycle hydrogen produced by nitrogenase, thus improving the efficiency of the nitrogen fixation process. In this work we report the generation and symbiotic behavior of hydrogenase-positive Rhizobium leguminosarum and Mesorhizobium loti strains effective in vetch (Vicia sativa) and birsfoot trefoil (Lotus corniculatus) forage crops, respectively. The ability of hydrogen recycling was transferred to these strains through the incorporation of hup minitransposon TnHB100, thus leading to full recycling of hydrogen in nodules. Inoculation of Vicia and Lotus plants with these engineered strains led to significant increases in the levels of nitrogen incorporated into the host legumes. The level of improvement of symbiotic performance was dependent on the recipient strain and also on the legume host. These results indicate that hydrogen recycling has the potential to improve symbiotic nitrogen fixation in forage plants.


2018 ◽  
Author(s):  
Patricia Gil-Díez ◽  
Manuel Tejada-Jiménez ◽  
Javier León-Mediavilla ◽  
Jiangqi Wen ◽  
Kirankumar S. Mysore ◽  
...  

ABSTRACTSymbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron-molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. MtMOT1.2 is aMedicago truncatulaMOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. A loss-of-functionmot1.2-1mutant showed reduced growth compared to wild-type plants when nitrogen fixation was required, but not when nitrogen was provided as nitrate. While no effect on molybdenum-dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen-fixing nodules, since genetic complementation with a wild-typeMtMOT1.2gene or molybdate-fortification of the nutrient solution, both restored wild-type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.


2019 ◽  
Author(s):  
Viviana Escudero ◽  
Isidro Abreu ◽  
Eric del Sastre ◽  
Manuel Tejada-Jiménez ◽  
Camile Larue ◽  
...  

SUMMARYSymbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires of relatively large levels of transition metals. These elements act as cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process participated by a number of metal transporters and small organic molecules that mediate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this non-proteinogenic amino acid forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, a phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would be the result of the altered iron distribution in nas2-1 nodules, as indicated by X-ray fluorescence studies. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.Significance StatementNicotianamine synthesis mediated by MtNAS2 is important for iron allocation for symbiotic nitrogen fixation by rhizobia in Medicago truncatula root nodules.


2017 ◽  
Author(s):  
Marta Senovilla ◽  
Rosario Castro-Rodríguez ◽  
Isidro Abreu ◽  
Viviana Escudero ◽  
Igor Kryvoruchko ◽  
...  

Summary• Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper transporter would introduce it into the cell to synthesize cupro-proteins.• COPT family members in model legumeMedicago truncatulawere identified and their expression determined. Yeast complementation assays, confocal microscopy, and phenotypical characterization of aTnt1insertional mutant line were carried out in the nodule-specificM.truncatulaCOPT family member.•Medicago truncatulagenome encodes eight COPT transporters.MtCOPT1(Medtr4g019870) is the only nodule-specificCOPTgene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a copper-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation ofMtCOPT1results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a copper-dependent function, such as cytochrome oxidase activity incopt1-1bacteroids.• These data are consistent with a model in which MtCOPT1 transports copper from the apoplast into nodule cells to provide copper for essential metabolic processes associated with symbiotic nitrogen fixation.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6294 ◽  
Author(s):  
Xiaomeng Liu ◽  
Xiyun Zhao ◽  
Xiaohan Li ◽  
Sanfeng Chen

The diazotrophicPaenibacillus polymyxaWLY78 possesses a minimal nitrogen fixation gene cluster consisting of nine genes (nifB nifH nifD nifK nifE nifN nifX hesAandnifV). Notably, thehesAgene contained within thenifgene cluster is also found withinnifgene clusters among diazotrophic cyanobacteria andFrankia. The predicted product HesA is a member of the ThiF-MoeB-HesA family containing an N-terminal nucleotide binding domain and a C-terminal MoeZ/MoeB-like domain. However, the function ofhesAgene in nitrogen fixation is unknown. In this study, we demonstrate that thehesAmutation ofP. polymyxaWLY78 leads to nearly complete loss of nitrogenase activity. The effect of the mutation can be partially suppressed by the addition of high levels of molybdate or cystine. However, the nitrogenase activity of thehesAmutant could not be restored byKlebsiella oxytoca nifQorEscherichia coli moeBcompletely. In addition, thehesAmutation does not affect nitrate reductase activity ofP. polymyxaWLY78. Our results demonstratehesAis a novel gene specially required for nitrogen fixation and its role is related to introduction of S and Mo into the FeMo-co of nitrogenase.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 988
Author(s):  
Kerstin Gühl ◽  
Rens Holmer ◽  
Ting Ting Xiao ◽  
Defeng Shen ◽  
Titis A. K. Wardhani ◽  
...  

Nitrogen fixation by rhizobia is a highly energy-demanding process. Therefore, nodule initiation in legumes is tightly regulated. Environmental nitrate is a potent inhibitor of nodulation. However, the precise mechanism by which this agent (co)regulates the inhibition of nodulation is not fully understood. Here, we demonstrate that in Medicago truncatula the lipo-chitooligosaccharide-induced accumulation of cytokinins is reduced in response to the application of exogenous nitrate. Under permissive nitrate conditions, perception of rhizobia-secreted signalling molecules leads to an increase in the level of four cytokinins (i.e., iP, iPR, tZ, and tZR). However, under high-nitrate conditions, this increase in cytokinins is reduced. The ethylene-insensitive mutant Mtein2/sickle, as well as wild-type plants grown in the presence of the ethylene biosynthesis inhibitor 2-aminoethoxyvinyl glycine (AVG), is resistant to the inhibition of nodulation by nitrate. This demonstrates that ethylene biosynthesis and perception are required to inhibit nodule organogenesis under high-nitrate conditions.


1983 ◽  
Vol 101 (2) ◽  
pp. 377-381 ◽  
Author(s):  
R. Rai ◽  
V. Prasad

SUMMARYRhizobium strains adapted to high temperature, and genotypes of green gram, were used to study the symbiotic N2-fixation in a summer season at two moisture levels in calcareous soil. Different interactions between strains and genotypes were observedatthe two moisture levels. At both moisture levels, strain S4 with the green gram genotype S8 showed the greatest grain yield, nitrogenase activity, leghaemoglobin and ethanolsoluble carbohydrate of nodules.


Sign in / Sign up

Export Citation Format

Share Document