scholarly journals Cytosolic Free N-Glycans Are Retro-Transported Into the Endoplasmic Reticulum in Plant Cells

2021 ◽  
Vol 11 ◽  
Author(s):  
Makoto Katsube ◽  
Natsuki Ebara ◽  
Megumi Maeda ◽  
Yoshinobu Kimura

During endoplasmic reticulum (ER)-associated degradation, free N-glycans (FNGs) are produced from misfolded nascent glycoproteins via the combination of the cytosolic peptide N-glycanase (cPNGase) and endo-β-N-acetylglucosaminidase (ENGase) in the plant cytosol. The resulting high-mannose type (HMT)-FNGs, which carry one GlcNAc residue at the reducing end (GN1-FNGs), are ubiquitously found in developing plant cells. In a previous study, we found that HMT-FNGs assisted in protein folding and inhibited β-amyloid fibril formation, suggesting a possible biofunction of FNGs involved in the protein folding system. However, whether these HMT-FNGs occur in the ER, an organelle involved in protein folding, remained unclear. On the contrary, we also reported the presence of plant complex type (PCT)-GN1-FNGs, which carry the Lewisa epitope at the non-reducing end, indicating that these FNGs had been fully processed in the Golgi apparatus. Since plant ENGase was active toward HMT-N-glycans but not PCT-N-glycans that carry β1-2xylosyl and/or α1-3 fucosyl residue(s), these PCT-GN1-FNGs did not appear to be produced from fully processed glycoproteins that harbored PCT-N-glycans via ENGase activity. Interestingly, PCT-GN1-FNGs were found in the extracellular space, suggesting that HMT-GN1-FNGs formed in the cytosol might be transported back to the ER and processed in the Golgi apparatus through the protein secretion pathway. As the first step in elucidating the production mechanism of PCT-GN1-FNGs, we analyzed the structures of free oligosaccharides in plant microsomes and proved that HMT-FNGs (Man9-7GlcNAc1 and Man9-8GlcNAc2) could be found in microsomes, which almost consist of the ER compartments.

1965 ◽  
Vol 26 (2) ◽  
pp. 523-537 ◽  
Author(s):  
G. Benjamin Bouck

The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ciara M Gallagher ◽  
Peter Walter

The membrane-bound transcription factor ATF6α is activated by proteolysis during endoplasmic reticulum (ER) stress. ATF6α target genes encode foldases, chaperones, and lipid biosynthesis enzymes that increase protein-folding capacity in response to demand. The off-state of ATF6α is maintained by its spatial separation in the ER from Golgi-resident proteases that activate it. ER stress induces trafficking of ATF6α. We discovered Ceapins, a class of pyrazole amides, as selective inhibitors of ATF6α signaling that do not inhibit the Golgi proteases or other UPR branches. We show that Ceapins block ATF6α signaling by trapping it in ER-resident foci that are excluded from ER exit sites. Removing the requirement for trafficking by pharmacological elimination of the spatial separation of the ER and Golgi apparatus restored cleavage of ATF6α in the presence of Ceapins. Washout of Ceapins resensitized ATF6α to ER stress. These results suggest that trafficking of ATF6α is regulated by its oligomeric state.


2012 ◽  
Vol 23 (16) ◽  
pp. 3203-3214 ◽  
Author(s):  
Yoko Ito ◽  
Tomohiro Uemura ◽  
Keiko Shoda ◽  
Masaru Fujimoto ◽  
Takashi Ueda ◽  
...  

The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.


1994 ◽  
Vol 45 (10) ◽  
pp. 1347-1351 ◽  
Author(s):  
Janey Henderson ◽  
Béatrice Stiat-Jeunemaitre ◽  
Richard Napier ◽  
Chris Hawes

The membrane system is made up of the nuclear envelopes, rough and smooth endoplasmic reticulum, Golgi apparatus and plasmalemma. Interconnexions between the various parts of the system are shown and these probably represent a flow of membrane from the endoplasmic reticulum through the Golgi apparatus to the plasmalemma. Membrane fractions have been isolated from broken cells and their function in the synthesis of polysaccharides established. It has been shown that the matrix polysaccharides of the wall (pectic substances and hemicelluloses) are formed within the membranes and that the pattern of synthesis of these polymers changes during differentiation of the cells. Cellulose microfibrils are probably synthesized at the plasmalemma which is formed by incorporation of membrane bounded vesicles from the Golgi apparatus. Thus the assembly of the polymers takes place either when the membrane is within the cytoplasm or when it is incorporated as the plasmalemma of the cell.


2021 ◽  
Vol 68 (5) ◽  
pp. 800-817
Author(s):  
M. F. Shishova ◽  
V. V. Yemelyanov

Abstract Intensive development of systemic biology involves intensification of such branches as proteomics and lipidomics, which are valid for systemic biology of plants. This trend is obvious due to the rapidly growing number of publications on proteomes and lipidomes of plant cells, tissues, and whole organs. Particulars of the plant nuclei, mitochondria, and chloroplasts have been rather well detailed in this regard. However, these data are scarce concerning the tonoplast, Golgi apparatus, endoplasmic reticulum, and other single-membrane organelles of the plant cell. This review surveys the current concepts related to specificity of protein and lipid spectra in the membrane structures of plant cells. The little data describing changes in these parameters in the course of development and under stress pressure are also analyzed.


2000 ◽  
Vol 28 (4) ◽  
pp. 505-512 ◽  
Author(s):  
A. V. Andreeva ◽  
H. Zheng ◽  
C. M. Saint-Jore ◽  
M. A. Kutuzov ◽  
D. E. Evans ◽  
...  

In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endo-membrane trafficking in plant cells.


Author(s):  
S.R. Allegra

The respective roles of the ribo somes, endoplasmic reticulum, Golgi apparatus and perhaps nucleus in the synthesis and maturation of melanosomes is still the subject of some controversy. While the early melanosomes (premelanosomes) have been frequently demonstrated to originate as Golgi vesicles, it is undeniable that these structures can be formed in cells in which Golgi system is not found. This report was prompted by the findings in an essentially amelanotic human cellular blue nevus (melanocytoma) of two distinct lines of melanocytes one of which was devoid of any trace of Golgi apparatus while the other had normal complement of this organelle.


Author(s):  
Sant S. Sekhon

Although there have been numerous studies concerning the morphogenetic changes accompanying the maturation of insect sperm, only a few deal with the sperm differentiation in the dragonflies. In two recent electron microscopic studies Kessel, has comprehensively treated the erlationship of microtubules to the nucleus and mid-piece structures during spermiogenesis in the dragonfly. The purpose of this study is to follow the sequential nuclear and cytoplasmic changes which accompany the differentiation of spermatogonium into a mature sperm during spermatogenesis in the dragonfly (Aeschna sp.).The dragonfly spermatogonia are characterized by large round nuclei. Loosely organized chromatin is usually unevenly distributed within the spermatogonial nuclei. The scant cytoplasm surrounding the nucleus contains mitochondria, the Golgi apparatus, elements of endoplasmic reticulum and numerous ribosomes (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document