scholarly journals Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ciara M Gallagher ◽  
Peter Walter

The membrane-bound transcription factor ATF6α is activated by proteolysis during endoplasmic reticulum (ER) stress. ATF6α target genes encode foldases, chaperones, and lipid biosynthesis enzymes that increase protein-folding capacity in response to demand. The off-state of ATF6α is maintained by its spatial separation in the ER from Golgi-resident proteases that activate it. ER stress induces trafficking of ATF6α. We discovered Ceapins, a class of pyrazole amides, as selective inhibitors of ATF6α signaling that do not inhibit the Golgi proteases or other UPR branches. We show that Ceapins block ATF6α signaling by trapping it in ER-resident foci that are excluded from ER exit sites. Removing the requirement for trafficking by pharmacological elimination of the spatial separation of the ER and Golgi apparatus restored cleavage of ATF6α in the presence of Ceapins. Washout of Ceapins resensitized ATF6α to ER stress. These results suggest that trafficking of ATF6α is regulated by its oligomeric state.

2006 ◽  
Vol 27 (3) ◽  
pp. 1027-1043 ◽  
Author(s):  
Satomi Nadanaka ◽  
Tetsuya Okada ◽  
Hiderou Yoshida ◽  
Kazutoshi Mori

ABSTRACT ATF6 is a membrane-bound transcription factor activated by proteolysis in response to endoplasmic reticulum (ER) stress to induce the transcription of ER chaperone genes. We show here that, owing to the presence of intra- and intermolecular disulfide bridges formed between the two conserved cysteine residues in the luminal domain, ATF6 occurs in unstressed ER in monomer, dimer, and oligomer forms. Disulfide-bonded ATF6 is reduced upon treatment of cells with not only the reducing reagent dithiothreitol but also the glycosylation inhibitor tunicamycin, and the extent of reduction correlates with that of activation. Although reduction is not sufficient for activation, fractionation studies show that only reduced monomer ATF6 reaches the Golgi apparatus, where it is cleaved by the sequential action of the two proteases S1P and S2P. Reduced monomer ATF6 is found to be a better substrate than disulfide-bonded forms for S1P. ER stress-induced reduction is specific to ATF6 as the oligomeric status of a second ER membrane-bound transcription factor, LZIP/Luman, is not changed upon tunicamycin treatment and LZIP/Luman is well cleaved by S1P in the absence of ER stress. This mechanism ensures the strictness of regulation, in that the cell can only process ATF6 which has experienced the changes in the ER.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Yu-ping Zhu ◽  
Ze Zheng ◽  
Shaofan Hu ◽  
Xufang Ru ◽  
Zhuo Fan ◽  
...  

The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1α-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1α−/− cells. By contrast, Nrf2−/−ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1α−/− and Nrf2−/−ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1α (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1α is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone or plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1α−/− cells, but rather are, to our surprise, decreased in Nrf2−/−ΔTA cells.


2002 ◽  
Vol 366 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Tetsuya OKADA ◽  
Hiderou YOSHIDA ◽  
Rieko AKAZAWA ◽  
Manabu NEGISHI ◽  
Kazutoshi MORI

In response to accumulation of unfolded proteins in the endoplasmic reticulum (ER), a homoeostatic response, termed the unfolded protein response (UPR), is activated in all eukaryotic cells. The UPR involves only transcriptional regulation in yeast, and approx. 6% of all yeast genes, encoding not only proteins to augment the folding capacity in the ER, but also proteins working at various stages of secretion, are induced by ER stress [Travers, Patil, Wodicka, Lockhart, Weissman and Walter (2000) Cell (Cambridge, Mass.) 101, 249–258]. In the present study, we conducted microarray analysis of HeLa cells, although our analysis covered only a small fraction of the human genome. A great majority of human ER stress-inducible genes (approx. 1% of 1800 genes examined) were classified into two groups. One group consisted of genes encoding ER-resident molecular chaperones and folding enzymes, and these genes were directly regulated by the ER-membrane-bound transcription factor activating transcription factor (ATF) 6. The ER-membrane-bound protein kinase double-stranded RNA-activated protein kinase-like ER kinase (PERK)-mediated signalling pathway appeared to be responsible for induction of the remaining genes, which are not involved in secretion, but may be important after cellular recovery from ER stress. In higher eukaryotes, the PERK-mediated translational-attenuation system is known to operate in concert with the transcriptional-induction system. Thus we propose that mammalian cells have evolved a strategy to cope with ER stress different from that of yeast cells.


2006 ◽  
Vol 27 (5) ◽  
pp. 1716-1729 ◽  
Author(s):  
Shinichi Kondo ◽  
Atsushi Saito ◽  
Shin-ichiro Hino ◽  
Tomohiko Murakami ◽  
Maiko Ogata ◽  
...  

ABSTRACT Endoplasmic reticulum (ER) stress transducers IRE1 (inositol requiring 1), PERK (PKR-like endoplasmic reticulum kinase), and ATF6 (activating transcription factor 6) are well known to transduce signals from the ER to the cytoplasm and nucleus when unfolded proteins accumulate in the ER. Recently, we identified OASIS (old astrocyte specifically induced substance) as a novel ER stress transducer expressed in astrocytes. We report here that BBF2H7 (BBF2 human homolog on chromosome 7), an ER-resident transmembrane protein with the bZIP domain in the cytoplasmic portion and structurally homologous to OASIS, is cleaved at the membrane in response to ER stress. The cleaved fragments of BBF2H7 translocate into the nucleus and can bind directly to cyclic AMP-responsive element sites to activate transcription of target genes. Interestingly, although BBF2H7 protein is not expressed under normal conditions, it is markedly induced at the translational level during ER stress, suggesting that BBF2H7 might contribute to only the late phase of unfolded protein response signaling. In a mouse model of focal brain ischemia, BBF2H7 protein is prominently induced in neurons in the peri-infarction region. Furthermore, in a neuroblastoma cell line, BBF2H7 overexpression suppresses ER stress-induced cell death, while small interfering RNA knockdown of BBF2H7 promotes ER stress-induced cell death. Taken together, our results suggest that BBF2H7 is a novel ER stress transducer and could play important roles in preventing accumulation of unfolded proteins in damaged neurons.


2021 ◽  
pp. 096032712110036
Author(s):  
MC Üstüner ◽  
C Tanrikut ◽  
D Üstüner ◽  
UK Kolaç ◽  
Z Özdemir Köroğlu ◽  
...  

Carbon tetrachloride (CCl4) is a toxic chemical that causes liver injury. CCl4 triggers endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR triggers autophagy to deal with the damage. The aim of this study was to investigate the effect of baicalein, derived from Scutellaria baicalensis, on CCl4-induced liver damage concerning ER stress and autophagy. Two groups of Wistar albino rats (n = 7/groups) were treated with 0.2 ml/kg CCl4 for 10 days with and without baicalein. Histological and transmission electron microscopy (TEM) analysis, autophagy, and ER stress markers measurements were carried out to evaluate the effect of baicalein. Histological examinations showed that baicalein reduced liver damage. TEM analysis indicated that baicalein inhibited ER stress and triggered autophagy. CCl4-induced elevation of C/EBP homologous protein (CHOP), glucose-regulating protein 78 (GRP78), activating transcription factor 4 (ATF4), activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK), and active/spliced form of X-box-binding protein 1 (XBP1s) ER stress markers were decreased by baicalein. Baicalein also increased the autophagy-related 5 (ATG5), Beclin1, and Microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine-conjugated form (LC3-II) autophagy marker levels. In conclusion, baicalein reduced the CCl4-induced liver damage by inhibiting ER stress and the trigger of autophagy.


2021 ◽  
pp. 1-10
Author(s):  
Vera Kovaleva ◽  
Mart Saarma

Parkinson’s disease (PD) pathology involves progressive degeneration and death of vulnerable dopamine neurons in the substantia nigra. Extensive axonal arborisation and distinct functions make this type of neurons particularly sensitive to homeostatic perturbations, such as protein misfolding and Ca2 + dysregulation. Endoplasmic reticulum (ER) is a cell compartment orchestrating protein synthesis and folding, as well as synthesis of lipids and maintenance of Ca2 +-homeostasis in eukaryotic cells. When misfolded proteins start to accumulate in ER lumen the unfolded protein response (UPR) is activated. UPR is an adaptive signalling machinery aimed at relieving of protein folding load in the ER. When UPR is chronic, it can either boost neurodegeneration and apoptosis or cause neuronal dysfunctions. We have recently discovered that mesencephalic astrocyte-derived neurotrophic factor (MANF) exerts its prosurvival action in dopamine neurons and in animal model of PD through the direct binding to UPR sensor inositol-requiring protein 1 alpha (IRE1α) and attenuation of UPR. In line with this, UPR targeting resulted in neuroprotection and neurorestoration in various preclinical PD animal models. Therefore, growth factors (GFs), possessing both neurorestorative activity and restoration of protein folding capacity are attractive as drug candidates for PD treatment especially their blood-brain barrier penetrating analogs and small molecule mimetics. In this review, we discuss ER stress as a therapeutic target to treat PD; we summarize the existing preclinical data on the regulation of ER stress for PD treatment. In addition, we point out the crucial aspects for successful clinical translation of UPR-regulating GFs and new prospective in GFs-based treatments of PD, focusing on ER stress regulation.


2015 ◽  
Vol 308 (10) ◽  
pp. C803-C812 ◽  
Author(s):  
Colin N. Young ◽  
Anfei Li ◽  
Frederick N. Dong ◽  
Julie A. Horwath ◽  
Catharine G. Clark ◽  
...  

Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.


Author(s):  
JaeSang Ko ◽  
Ji-Young Kim ◽  
Min Kyung Chae ◽  
Eun Jig Lee ◽  
Jin Sook Yoon

We examined endoplasmic reticulum (ER) stress-related gene expression in orbital tissues from patients with Graves’ orbitopathy (GO) and the effects of silencing protein kinase RNA-like endoplasmic reticulum kinase (PERK) in primary orbital fibroblast cultures to demonstrate the therapeutic potential of PERK-modulating agents in GO management. The expression of ER stress related genes in orbital tissue harvested from individuals with or without GO was studied using real-time polymerase chain reaction. The role of PERK in GO pathogenesis was examined through small-interfering RNA (siRNA)-mediated silencing in cultured primary orbital fibroblasts. Intracellular reactive oxygen species (ROS) levels induced in response to cigarette smoke extract (CSE) or hydrogen peroxide were measured using 5-(and 6)-carboxy-20,70-dichlorodihydrofluorescein diacetate staining and flow cytometry. Cells were stained with Oil Red O, and adipogenesis-related transcription factor expression was evaluated through western blotting after adipogenic differentiation. PERK, activating transcription factor 4 (ATF4), and CCAAT-enhancer-binding protein (C/EBP)-homologous protein(CHOP)mRNA levels were significantly higher in GO orbital tissues than in non-GO orbital tissues. PERK silencing inhibited CSE- or hydrogen peroxide-induced ROS generation. After adipogenic differentiation, GO orbital fibroblasts revealed decreased lipid droplets and downregulation of C/EBPα, C/EBPβ, and peroxisome proliferator-activator gamma (PPARγ) in PERK siRNA-transfected cells. The orbital tissues of patients with GO were exposed to chronic ER stress and subsequently exhibited enhanced unfolded protein response (especially through the PERK pathway). PERK silencing reduced oxidative stress and adipogenesis in GO orbital fibroblasts in vitro. Our results imply that PERK-modulating agents can potentially be used to manage GO.


1978 ◽  
Vol 33 (1-2) ◽  
pp. 65-69 ◽  
Author(s):  
C. Postius ◽  
H. Kindi

Abstract 1. The time course of activity of soluble and microsomal phenylalanine ammonia-lyase (PAL) was studied in dark grown cell cultures of soybean (Glycine max). A distinct activity increase of PAL in the soluble and microsomal fraction occurred prior to the stationary phase of the cell culture. Cinnamic acid p-hydroxylase and NADH : cytochrome c reductase, too, exhibited maximal activity in the log phase, 5 days after the transfer of soybean cells to fresh culture medium.2. Upon subfractionation of the once washed microsomal fraction by sedimentation velocity centrifugation on a sucrose gradient, membranes of the endoplasmic reticulum could be separated from fractions containing mainly membranes from the Golgi apparatus or plasma membranes, respectively. PAL and cinnamic acid p-hydroxylase were found in fractions of endoplasmic reticulum whereas no activity of either enzymes could be detected in fractions containing Golgi apparatus or plasma membranes.3. Repeated washing of microsomal fractions led to a residual membrane-bound PAL representing about 1% of the total PAL activity of the cells. This residual membrane-bound activity could be solubilized almost completely by Triton X-100 or digitonin at concentrations of 0.5 - 5%.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ciara M Gallagher ◽  
Carolina Garri ◽  
Erica L Cain ◽  
Kenny Kean-Hooi Ang ◽  
Christopher G Wilson ◽  
...  

The membrane-bound transcription factor ATF6α plays a cytoprotective role in the unfolded protein response (UPR), required for cells to survive ER stress. Activation of ATF6α promotes cell survival in cancer models. We used cell-based screens to discover and develop Ceapins, a class of pyrazole amides, that block ATF6α signaling in response to ER stress. Ceapins sensitize cells to ER stress without impacting viability of unstressed cells. Ceapins are highly specific inhibitors of ATF6α signaling, not affecting signaling through the other branches of the UPR, or proteolytic processing of its close homolog ATF6β or SREBP (a cholesterol-regulated transcription factor), both activated by the same proteases. Ceapins are first-in-class inhibitors that can be used to explore both the mechanism of activation of ATF6α and its role in pathological settings. The discovery of Ceapins now enables pharmacological modulation all three UPR branches either singly or in combination.


Sign in / Sign up

Export Citation Format

Share Document