scholarly journals EARLY STARVATION 1 Is a Functionally Conserved Protein Promoting Gravitropic Responses in Plants by Forming Starch Granules

2021 ◽  
Vol 12 ◽  
Author(s):  
Kijong Song ◽  
Dae-Woo Lee ◽  
Jeongheon Kim ◽  
Jaewook Kim ◽  
Hwanuk Guim ◽  
...  

Starch granules in the endodermis of plant hypocotyls act as statoliths that promote hypocotyl negative gravitropism—the directional growth of hypocotyls against gravity—in the dark. To identify the molecular components that regulate hypocotyl negative gravitropism, we performed a mutagenesis screen and isolated reduced gravitropic 1 (rgv1) mutants that lack starch granules in their hypocotyl endodermis and show reduced hypocotyl negative gravitropism in the dark. Using whole genome sequencing, we identified three different rgv1 mutants that are allelic to the previously reported early starvation 1 mutant, which is rapidly depleted of starch just before the dawn. ESV1 orthologs are present in starch-producing green organisms, suggesting ESV1 is a functionally conserved protein necessary for the formation of starch granules. Consistent with this, we found that liverwort and rice ESV1 can complement the Arabidopsis ESV1 mutant phenotype for both starch granules and hypocotyl negative gravitropism. To further investigate the function of ESV1 in other plants, we isolated rice ESV1 mutants and found that they show reduced levels of starch in their leaves and loosely packed starch granules in their grains. Both Arabidopsis and rice ESV1 mutants also lack starch granules in root columella and show reduced root gravitropism. Together, these results indicate ESV1 is a functionally conserved protein that promotes gravitropic responses in plants via its role in starch granule formation.

1959 ◽  
Vol 12 (2) ◽  
pp. 146 ◽  
Author(s):  
LH May ◽  
MS Buttrose

Types, numbers, volumes, and weights of starch granules in the barley endosperm were measured at different times from anthesis to maturity. The formation of two types of granule was confirmed: the first (type A) was initiated until 15 days after anthesis; the second (type B) between 18 and 30 days. At maturity there were approximately 10 times as many type B granules as type A, although the latter made up 90 per cent. of the total granule volume. There was a linear relationship between starch granule and endosperm volume throughout kernel development, while the rate of increase in volume per unit granule volume was the same, irrespective of granule size, at anyone time. Starch weight increased as endosperm dry weight increased although the precise form of this relationship is in doubt. The interrelationships between starch granule weight and volume, and also endosperm dry weight and volume, suggest that both starch granules and endosperm increase in density during development.


2018 ◽  
Author(s):  
Camille Vandromme ◽  
Corentin Spriet ◽  
David Dauvillée ◽  
Adeline Courseaux ◽  
Jean-Luc Putaux ◽  
...  

AbstractThe initiation of starch granule formation is still poorly understood. However, soluble starch synthase 4 (SS4) appears to be a major component of this process since it is required to synthetize the correct number of starch granules in the chloroplasts of Arabidopsis thaliana plants. A yeast-2-hybrid screen allowed the identification of several putative SS4 interacting partners. We identified the product of At4g32190 locus as a chloroplast-targeted PROTEIN INVOLVED IN STARCH INITIATION (named PII1). Arabidopsis mutants devoid of PII1 display an alteration of starch initiation process and accumulate, on average, one starch granule per plastid instead of the 5 to 7 granules found in plastids of wild-type plants. These granules are larger than in wild type and they remain flat and lenticular. pii1 mutants display wild-type growth rates and accumulate standard starch amounts. Moreover, starch characteristics, such as amylopectin chain length distribution, remain unchanged. Our results reveal the involvement of PII1 in starch priming process in Arabidopsis leaves through interaction with SS4.


2018 ◽  
Author(s):  
Mark Stevenson ◽  
Alistair T Pagnamenta ◽  
Heather G Mack ◽  
Judith A Savige ◽  
Kate E Lines ◽  
...  

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 146-146
Author(s):  
D. M. Bickhart ◽  
L. Xu ◽  
J. L. Hutchison ◽  
J. B. Cole ◽  
D. J. Null ◽  
...  

Author(s):  
Ainhoa Arrieta-Gisasola ◽  
Aitor Atxaerandio Landa ◽  
Javier Garaizar ◽  
Joseba Bikandi ◽  
José Karkamo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document