Physiology of Cereal Grain II. Starch Granule Formation in the Developing Barley Kernel

1959 ◽  
Vol 12 (2) ◽  
pp. 146 ◽  
Author(s):  
LH May ◽  
MS Buttrose

Types, numbers, volumes, and weights of starch granules in the barley endosperm were measured at different times from anthesis to maturity. The formation of two types of granule was confirmed: the first (type A) was initiated until 15 days after anthesis; the second (type B) between 18 and 30 days. At maturity there were approximately 10 times as many type B granules as type A, although the latter made up 90 per cent. of the total granule volume. There was a linear relationship between starch granule and endosperm volume throughout kernel development, while the rate of increase in volume per unit granule volume was the same, irrespective of granule size, at anyone time. Starch weight increased as endosperm dry weight increased although the precise form of this relationship is in doubt. The interrelationships between starch granule weight and volume, and also endosperm dry weight and volume, suggest that both starch granules and endosperm increase in density during development.

2019 ◽  
Vol 71 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Tansy Chia ◽  
Marcella Chirico ◽  
Rob King ◽  
Ricardo Ramirez-Gonzalez ◽  
Benedetta Saccomanno ◽  
...  

Abstract In Triticeae endosperm (e.g. wheat and barley), starch granules have a bimodal size distribution (with A- and B-type granules) whereas in other grasses the endosperm contains starch granules with a unimodal size distribution. Here, we identify the gene, BGC1 (B-GRANULE CONTENT 1), responsible for B-type starch granule content in Aegilops and wheat. Orthologues of this gene are known to influence starch synthesis in diploids such as rice, Arabidopsis, and barley. However, using polyploid Triticeae species, we uncovered a more complex biological role for BGC1 in starch granule initiation: BGC1 represses the initiation of A-granules in early grain development but promotes the initiation of B-granules in mid grain development. We provide evidence that the influence of BGC1 on starch synthesis is dose dependent and show that three very different starch phenotypes are conditioned by the gene dose of BGC1 in polyploid wheat: normal bimodal starch granule morphology; A-granules with few or no B-granules; or polymorphous starch with few normal A- or B-granules. We conclude from this work that BGC1 participates in controlling B-type starch granule initiation in Triticeae endosperm and that its precise effect on granule size and number varies with gene dose and stage of development.


2019 ◽  
Author(s):  
Tansy Chia ◽  
Marcella Chirico ◽  
Rob King ◽  
Ricardo Ramirez-Gonzalez ◽  
Benedetta Saccomanno ◽  
...  

AbstractPreviously, we identified a quantitative trait locus on the group 4 chromosomes of Aegilops and bread wheat that controls B-type starch-granule content. Here, we identify a candidate gene by fine-mapping in Aegilops and confirm its function using wheat TILLING mutants. This gene is orthologous to the FLOURY ENDOSPERM 6 (FLO6) gene of rice and barley and the PTST2 gene of Arabidopsis. In Triticeae endosperm, reduction in the gene dose of functional FLO6 alleles results in reduction, or loss, of B-granules. This is due to repression of granule initiation in late-grain development, but has no deleterious impact on the synthesis of A-granules. The complete absence of functional FLO6, however, results in reduced numbers of normal A-type and B-type granules and the production of highly-abnormal granules that vary in size and shape. This polymorphous starch seen in a wheat flo6 triple mutant is similar to that observed in the barley mutant Franubet. Analysis of Franubet (fractured Nubet) starch suggests that the mutant A-granules are not fractured but compound, due to stimulation of granule initiation in plastids during early-grain development. Thus, in different situations in Triticeae, FLO6 either stimulates or represses granule initiation.


2021 ◽  
Author(s):  
Benedetta Saccomanno ◽  
Pierre Berbezy ◽  
Kim Findlay ◽  
Jennifer Shoesmith ◽  
Cristobal Uauy ◽  
...  

ABSTRACTThe physicochemical and agronomical properties of a new form of bread wheat, lacking B-type starch granules (BlessT) was assessed. Three BlessT mutant lines, made by combining homoeologous deletions of BGC1, a gene responsible for the control of B-granule content were compared with two sibling lines with normal starch phenotype and the parent line, cv. Paragon. Quantification of starch granule size and number in developing grain confirmed the lack of small, B-type starch granules throughout development in BlessT. Most starch, flour, grain and loaf characteristics did not vary between BlessT and the wild type sibling controls. However, BlessT starches had higher water absorption, reduced grain hardness and higher protein content, and dough made from BlessT flour required more water and had increased elasticity. Despite the lack of B-granules, BlessT lines do not display a significant decrease in total starch content suggesting that it should be possible to produce commercial wheat varieties that lack B-type starch granules without compromising yield. These findings support the potential utility of this novel type of wheat as a specialist crop in applications ranging from bread making and alcohol production to improved industrial starch products.


2018 ◽  
Author(s):  
Camille Vandromme ◽  
Corentin Spriet ◽  
David Dauvillée ◽  
Adeline Courseaux ◽  
Jean-Luc Putaux ◽  
...  

AbstractThe initiation of starch granule formation is still poorly understood. However, soluble starch synthase 4 (SS4) appears to be a major component of this process since it is required to synthetize the correct number of starch granules in the chloroplasts of Arabidopsis thaliana plants. A yeast-2-hybrid screen allowed the identification of several putative SS4 interacting partners. We identified the product of At4g32190 locus as a chloroplast-targeted PROTEIN INVOLVED IN STARCH INITIATION (named PII1). Arabidopsis mutants devoid of PII1 display an alteration of starch initiation process and accumulate, on average, one starch granule per plastid instead of the 5 to 7 granules found in plastids of wild-type plants. These granules are larger than in wild type and they remain flat and lenticular. pii1 mutants display wild-type growth rates and accumulate standard starch amounts. Moreover, starch characteristics, such as amylopectin chain length distribution, remain unchanged. Our results reveal the involvement of PII1 in starch priming process in Arabidopsis leaves through interaction with SS4.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kijong Song ◽  
Dae-Woo Lee ◽  
Jeongheon Kim ◽  
Jaewook Kim ◽  
Hwanuk Guim ◽  
...  

Starch granules in the endodermis of plant hypocotyls act as statoliths that promote hypocotyl negative gravitropism—the directional growth of hypocotyls against gravity—in the dark. To identify the molecular components that regulate hypocotyl negative gravitropism, we performed a mutagenesis screen and isolated reduced gravitropic 1 (rgv1) mutants that lack starch granules in their hypocotyl endodermis and show reduced hypocotyl negative gravitropism in the dark. Using whole genome sequencing, we identified three different rgv1 mutants that are allelic to the previously reported early starvation 1 mutant, which is rapidly depleted of starch just before the dawn. ESV1 orthologs are present in starch-producing green organisms, suggesting ESV1 is a functionally conserved protein necessary for the formation of starch granules. Consistent with this, we found that liverwort and rice ESV1 can complement the Arabidopsis ESV1 mutant phenotype for both starch granules and hypocotyl negative gravitropism. To further investigate the function of ESV1 in other plants, we isolated rice ESV1 mutants and found that they show reduced levels of starch in their leaves and loosely packed starch granules in their grains. Both Arabidopsis and rice ESV1 mutants also lack starch granules in root columella and show reduced root gravitropism. Together, these results indicate ESV1 is a functionally conserved protein that promotes gravitropic responses in plants via its role in starch granule formation.


Author(s):  
S. Fujinaga ◽  
K. Maruyama ◽  
C.W. Williams ◽  
K. Sekhri ◽  
L. Dmochowski

Yumoto and Dmochowski (Cancer Res.27, 2098 (1967)) reported the presence of mature and immature type C leukemia virus particles in leukemic organs and tissues such as lymph nodes, spleen, thymus, liver, and kidneys of SJL/J strain mice with Hodgki's-like disease or reticulum cell neoplasm (type B). In an attempt to ascertain the possibility that this neoplasia may be of viral origin, experiments with induction and transmission of this neoplasm were carried out using cell-free extracts of leukemic organs from an SJL/J strain mouse with spontaneous disease.It has been possible to induce the disease in low-leukemia BALB/c and C3HZB strain mice and serially transfer the neoplasia by cell-free extracts of leukemic organs of these mice. Histological examination revealed the neoplasia to be of either reticulum cell-type A or type B. Serial transfer is now in its fifth passage. In addition leukemic spleen from another SJL/J strain mouse with spontaneous reticulum cell neoplasm (type A) was set up in tissue culture and is now in its 141st serial passage in vitro. Preliminary results indicate that cell-free material of 39th tissue culture passage can reproduce neoplasia in BALB/c mice.


1992 ◽  
Vol 68 (03) ◽  
pp. 297-300 ◽  
Author(s):  
Monica Galli ◽  
Paul Comfurius ◽  
Tiziano Barbui ◽  
Robert F A Zwaal ◽  
Edouard M Bevers

SummaryPlasmas of 16 patients positive for both IgG anticardiolipin (aCL) antibodies and lupus anticoagulant (LA) antibodies were subjected to adsorption with liposomes containing cardiolipin. In 5 of these plasmas both the anticardiolipin and the anticoagulant activities were co-sedimented with the liposomes in a dose-dependent manner, whereas in the remaining cases only the anticardiolipin activity could be removed by the liposomes, leaving the anticoagulant activity (LA) in the supernatant plasma. aCL antibodies purified from the first 5 plasmas were defined as aCL-type A, while the term aCL-type B was used for antibodies in the other 11 plasmas, from which 2 were selected for this study.Prolongation of the dRVVT was produced by affinity-purified aCL-type A antibodies in plasma of human as well as animal (bovine, rat and goat) origin. aCL-type B antibodies were found to be devoid of anticoagulant activity, while the corresponding supernatants containing LA IgG produced prolongation of the dRVVT only in human plasma.These anticoagulant activities of aCL-type A and of LA IgG's were subsequently evaluated in human plasma depleted of β2-glycoprotein I (β2-GPI), a protein which was previously shown to be essential in the binding of aCL antibodies to anionic phospholipids. Prolongation of the dRVVT by aCL-type A antibodies was abolished using β2-GPI deficient plasma, but could be restored upon addition of β2-GPI. In contrast, LA IgG caused prolongation of the dRVVT irrespective of the presence or absence of β2-GPI.Since β2-GPI binds to negatively-charged phospholipids and impedes the conversion of prothrombin by the factor Xa/Va enzyme complex (Nimpf et al., Biochim Biophys Acta 1986; 884: 142–9), comparison was made of the effect of aCL-type A and aCL-type B antibodies on the rate of thrombin formation in the presence and absence of β2-GPI. This was measured in a system containing highly purified coagulation factors Xa, Va and prothrombin and lipid vesicles composed of 20 mole% phosphatidylserine and 80 mole% phosphatidylcholine. No inhibition on the rate of thrombin formation was observed with both types of aCL antibodies when either β2-GPI or the lipid vesicles were omitted. Addition of β2-GPI to the prothrombinase assay in the presence of lipid vesicles causes a time-dependent inhibition which was not affected by the presence of aCL-type B or non-specific IgG. In contrast, the presence of aCL-type A antibodies dramatically increased the anticoagulant effect of β2-GPI. These data indicate that the anticoagulant activity of aCL-type A antibodies in plasma is mediated by β2-GPI.


2013 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Noar Muda Satyawan ◽  
Shelly Tutupoho ◽  
Yusli Wardiatno ◽  
Makoto Tsuchiya

Erosion rate on corals due to activities of other biota is called bioerosion. The rock-boring urchin, Echinometra mathaei, when it is abundant, plays a significant role in benthic ecosystems, including biological processes like coral erosion. During feeding, E. mathaei erodes calcium carbonate besides grazing on algae living on coral, so it plays an important role in both organic and inorganic carbons in coral reefs. The urchin E. mathaei actively feeds during the night time (nocturnal grazer). Although in Okinawa four types (A-D) of the urchin exist, the research only focused on the types A and B. Type A of E. mathaei produced 0.44951 g feces per day on average while type B produced 0.38030 g feces per day. CaCO3 analysis in feces and gut contents showed bioerosion rate of E. mathaei type A was 0.64492 g/individu/day, and 0.54436 g/individu/day in type B. There were no significant differences in bioerosion impact of E. mathaei type A and B© Laju erosi pada karang yang disebabkan oleh biota, dikenal dengan bioerosi. Bulu babi jenis Echinometra mathaei, ketika melimpah, menjadi sangat berpengaruh terhadap ekosistem bentik termasuk proses biologi seperti erosi karang. Selama aktivitas makan, E. mathaei menggerus kalsium karbonat dalam proporsi yang besar di samping alga yang tumbuh menempel pada karang sehingga memiliki peran penting dalam siklus karbon organik dan anorganik di ekosistem terumbu karang. Bulu babi E. mathaei aktif mencari makan pada malam hari (nocturnal grazer). Meskipun di Okinanawa ada 4 tipe (A-D), pada eksperimen kali ini memfokuskan pada tipe A dan B saja. Tipe A E. mathaei rata-rata memproduksi 0,44951 g feses/hari dan tipe B memproduksi 0,38030 g feses/hari. Berdasarkan analisis CaCO3 yang dilakukan pada feses dan isi lambung, laju bioerosi yang disebabkan oleh E. mathaei tipe A sebesar 0,64492 g/individu/hari sedangkan tipe B sebesar 0,54436 g/individu/hari. Tidak terdapat perbedaan dampak bioerosi yang signifikan antara E. mathaei tipe A dan B©


Sign in / Sign up

Export Citation Format

Share Document