scholarly journals VaSDC1 Is Involved in Modulation of Flavonoid Metabolic Pathways in Black and Red Seed Coats in Adzuki Bean (Vigna angularis L.)

2021 ◽  
Vol 12 ◽  
Author(s):  
Liwei Chu ◽  
Pu Zhao ◽  
Kaili Wang ◽  
Bo Zhao ◽  
Yisong Li ◽  
...  

Seed coat colour is an important nutritional quality trait. Variations in anthocyanins and flavonoids induce the diversity of seed coat colour in adzuki bean (Vigna angularis L.). Red seed coat and black seed coat are important adzuki bean cultivars. Insights into the differences of flavonoid metabolic pathways between black and red adzuki bean are significant. In this study, we explored that the difference in seed coat colour between the red (Jingnong6) and the black (AG118) is caused by the accumulation of anthocyanins. The RNA-sequencing (RNA-Seq) and real-time reverse transcription (qRT)-PCR results showed that the Vigna angularis L. seed coat color (VaSDC1) gene, an R2R3-MYB transcription factor, should be the key gene to regulate the black and red seed coat colours. In three different colouring staes of seed development, VaSDC1 was specifically expressed in the black seed coat (AG118) landrace, which activates the structural genes of flavonoid metabolic pathways. As a result, this caused a substantial accumulation of anthocyanins and created a dark blue-black colour. In the red (Jingnong6) seed coat variety, low expression levels of VaSDC1 resulted in a lower accumulation of anthocyanins than in AG118. In addition, VaSDC1 was genetically mapped in the interval between simple-sequence repeat (SSR) markers Sca326-12, Sca326-4, and BAgs007 on chromosome 3 using an F4 segregating population derived from the cross between Jingnong6 and AG118. These results will facilitate the improvement of nutritional quality breeding in adzuki beans.

Euphytica ◽  
2015 ◽  
Vol 206 (3) ◽  
pp. 609-617 ◽  
Author(s):  
Yuki Horiuchi ◽  
Hiroki Yamamoto ◽  
Reina Ogura ◽  
Naomi Shimoda ◽  
Hitoshi Sato ◽  
...  

Author(s):  
P. V. Pawar ◽  
R. M. Naik ◽  
M. P. Deshmukh ◽  
R. D. Satbhai ◽  
S. G. Mohite

The soybean seed is highly susceptible to field weathering and mechanical damage which adversely affect its longevity. Mechanical injury can occur at any time during harvesting, drying and storage conditioning of seeds. The seed coat color and leachate conductivity of soybean has been correlated with seed longevity and black seed coat color has been reported to be positively correlated with better seed longevity. In order to understand the physico-chemical attributes related to soybean seed longevity, biochemical and molecular analysis of the parents exhibiting black (Birsasoya-1) and yellow seed coat colour (EC 241780) and the eleven F3 progenies of the cross exhibiting brown, yellow and black seed coat colour was carried out. The results revealed that vita-E, lignin, calcium content and activity of antioxidative enzymes appeared to be positively correlated with soybean seed longevity and levels were higher in black and brown seed coat color progenies. The lipid peroxidation rate was inversely related to membrane injury caused by ROS and comparatively much less lipid peroxidation rate was recorded in black and brown seed coat colour parents and progenies having better seed longevity. The SSR primers Satt162, Satt523 and Satt453 which are either linked with seed coat colour and seed permeability exhibited a specific size allelic fragments in soybean genotypes and crosses with better seed longevity.


Author(s):  
G.N. Suvorova ◽  

The purpose of the research was to determine the inheritance of black seed coat colour in lentil variety ‘Beluga’. The seeds collected from F1 plants in cross of ‘Rauza’ (yellow seeds) × ‘Beluga’ (black seeds) were of grey colour with black mottles. F2 ratio of nonblack and black seeds was 62:6, which corresponded to 15:1 dihybrid segregation. It is concluded that the black seed coat colour of ‘Beluga’ is controlled by two dominant genes.


Author(s):  
R. B. Shingare ◽  
V. P. Chimote ◽  
M. P. Deshmukh ◽  
T. J. Bhor ◽  
A. A. Kale

Background: In soybean yellow seed coat is preferred in the market, however, colored ones are currently gaining attention because of their medicinal and nutritive values; besides. Hence it is essential to breed varieties with desired seed coat colour. Methods: Twelve genotypes with six each having yellow and black seed coats were screened with fourteen primers linked to seed coat colour governing loci. Result: Out of them twelve primers showed polymorphism. Monomorphism was observed with both T loci specific and two of the three R loci specific primers. However I locus specific primers i.e. SM303, SM305 and TR showed polymorphism shared by their seed coat color. SM303 amplified a 180 bp sized band in yellow seed coated genotypes and a 130 bp band in black seed coated genotypes. SM305 amplified dual bands with a 200bp band being monomorphic and an additional band (192-216 bp range) present in only yellow seed coated genotypes, of which a 208 bp band was shared by four yellow seed coated genotypes. Cold induced seed coat discoloration specific TR primer generated bands of different size ranges in yellow seed coated (336-344 bp) and black seed coated genotypes (300-320), of which a 340 bp band was shared by four yellow seed coated genotypes.


2021 ◽  
pp. 1-7
Author(s):  
Liwei Chu ◽  
Pu Zhao ◽  
Xueqi Huang ◽  
Bo Zhao ◽  
Yisong Li ◽  
...  

Abstract Seed coat colour is an important quality trait, domestication trait and morphological marker, and is closely associated with flavonoid and anthocyanin metabolism pathways. The seed coat colour of adzuki bean, an important legume crop, influences the processing quality of its paste, the commodity and its nutritional quality. In this study, the genetic relationships of seed coat colour were analysed using 12 hybridized combinations of F2 individuals and four F3 families derived from hybridized combinations between the accessions of eight seed coat colours. The loci of the colour traits were analysed based on phenotypes and using the chi-square test. Ivory colour is recessive to red and is controlled by a single R locus. Black, black mottle on grey, black mottle on red, light brown, golden and brown are all dominant to red. The phenotypes of black mottle on red, light brown, golden and brown are all controlled by a single genetic locus. Black mottle on grey is controlled by two loci. Black is controlled with two loci, and the black locus shows dominant epistasis to another locus. A genetic model of these seed coat colours was predicted. Our results will be important for gene mapping and cloning of seed coat colour characters and for providing further insight into the regulatory network of seed coat colour.


1970 ◽  
Vol 6 (1) ◽  
pp. 27-31 ◽  
Author(s):  
M. Osman Khidir ◽  
H. El Gizouli Osman

SummaryIn 90 local sesame types there was some association between seed coat colour and seed size, stem height, number of branches, number of pods, yield per plant and earliness. Forty-five coefficients show the degree of correlation between ten agronomic characters. Yield was significantly and positively correlated with all characters except the number of days to first flowering and to first maturity. Stem height, number of pods per plant and seed size seem to be the best criteria for selection in sesame.


2020 ◽  
Vol 100 (3) ◽  
pp. 284-295
Author(s):  
Mei Xiong ◽  
Mengli Zhao ◽  
Zhen-Xiang Lu ◽  
Parthiba Balasubramanian

Seed coat colour is an important determinant of the visual quality of dry beans, as seeds are sold as a dry commodity. Phenolic compounds have a major effect on the colour of bean seeds. The objectives of the study were to determine the changes in phenolic compounds during seed development and in whole seeds of yellow bean genotypes with contrasting seed coat colour, and the effects of storage temperature and duration on seed phenolics and colour. Condensed tannin, phenolic acid, flavonoids, and antioxidant activity were observed as early as 10 d after flowering in the developing seeds of Arikara Yellow, which darken at harvest and during postharvest storage. In contrast, for CDC Sol and AAC Y073 seeds which remain yellow, phenolic compounds and antioxidant activity were consistently low. Seed brightness (L*) and yellow colour (b*) were negatively correlated with phenolic compounds and antioxidant activity, and conversely seed redness (a*) was positively correlated with phenolic compounds, confirming a negative influence of phenolic compounds on seed coat colour. Yellow bean genotypes had low anthocyanin but were high in β-carotene. Storage temperature influenced condensed tannin and seed coat colour, whereas the duration of storage influenced phenolic compounds, antioxidant activity, and seed coat colour. Higher temperatures (20 or 30 °C) and longer storage duration (120 or 180 d) generally resulted in darker seeds with increasing redness compared with seeds stored at 6 °C or for 60 d. AAC Y073 and CDC Sol with improved seed coat colour may increase consumer preference, value, and marketability of yellow beans.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bingbing Li ◽  
Xuqiang Lu ◽  
Haileslassie Gebremeskel ◽  
Shengjie Zhao ◽  
Nan He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document