scholarly journals Integrated Transcriptomics and Metabolomics Analyses Provide Insights Into the Response of Chongyi Wild Mandarin to Candidatus Liberibacter Asiaticus Infection

2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Peng ◽  
Jing-Liang Kang ◽  
Xin-Ting Xiong ◽  
Fang-Ting Cheng ◽  
Xiao-Juan Zhou ◽  
...  

Candidatus Liberibacter asiaticus (CLas) is the causative agent of Huanglongbing (HLB), which has caused great economic losses to the citrus industry. The molecular mechanism of the host response to CLas in wild citrus germplasm has been reported less. Eighteen weeks after inoculation via grafting, all the CLas-inoculated Chongyi wild mandarin (Citrus reticulata) were positive and showed severe anatomical aberrations, suggesting its susceptibility to HLB. Transcriptomics and metabolomics analyses of leaves, barks, and roots from mock-inoculated (control) and CLas-inoculated seedlings were performed. Comparative transcriptomics identified 3,628, 3,770, and 1,716 differentially expressed genes (DEGs) between CLas-infected and healthy tissues in the leaves, barks, and roots, respectively. The CLas-infected tissues had higher transcripts per kilobase per million values and more genes that reached their maximal expression, suggesting that HLB might cause an overall increase in transcript accumulation. However, HLB-triggered transcriptional alteration showed tissue specificity. In the CLas-infected leaves, many DEGs encoding immune receptors were downregulated. In the CLas-infected barks, nearly all the DEGs involved in signaling and plant-pathogen interaction were upregulated. In the CLas-infected roots, DEGs encoding enzymes or transporters involved in carotenoid biosynthesis and nitrogen metabolism were downregulated. Metabolomics identified 71, 62, and 50 differentially accumulated metabolites (DAMs) in the CLas-infected leaves, barks and roots, respectively. By associating DEGs with DAMs, nitrogen metabolism was the only pathway shared by the three infected tissues and was depressed in the CLas-infected roots. In addition, 26 genes were determined as putative markers of CLas infection, and a hypothesized model for the HLB susceptibility mechanism in Chongyi was proposed. Our study may shed light on investigating the molecular mechanism of the host response to CLas infection in wild citrus germplasm.

Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1080-1086 ◽  
Author(s):  
Greg McCollum ◽  
Mark Hilf ◽  
Mike Irey ◽  
Weiqi Luo ◽  
Tim Gottwald

Huanglongbing (HLB) disease is the most serious threat to citrus production worldwide and, in the last decade, has devastated the Florida citrus industry. In the United States, HLB is associated with the phloem-limited α-proteobacterium ‘Candidatus Liberibacter asiaticus’ and its insect vector, the Asian citrus psyllid (ACP; Diaphorina citri). Significant effort is being put forth to develop novel citrus germplasm that has a lower propensity to succumb to HLB than do currently available varieties. Effective methods of screening citrus germplasm for susceptibility to HLB are essential. In this study, we exposed small, grafted trees of 16 citrus types to free-ranging ACP vectors and ‘Ca. L. asiaticus’ inoculum in the greenhouse. During 45 weeks of exposure to ACP, the cumulative incidence of ‘Ca. L. asiaticus’ infection was 70%. Trees of Citrus macrophylla and C. medica were most susceptible to ‘Ca. L. asiaticus’, with 100% infection by the end of the test period in three trials, while the complex genetic hybrids ‘US 1-4-59’ and ‘Fallglo’ consistently were least susceptible, with approximately 30% infection. Results obtained in this greenhouse experiment showed good agreement with trends observed in the orchard, supporting the validity of our approach for screening citrus germplasm for susceptibility to HLB.


2020 ◽  
Vol 45 (6) ◽  
pp. 626-645 ◽  
Author(s):  
Tatiany Aparecida Teixeira Soratto ◽  
Maiara Curtolo ◽  
Samanta Marengo ◽  
Ana Lúcia Dezotti ◽  
Rômulo Pedro Macêdo Lima ◽  
...  

2015 ◽  
Vol 105 (4) ◽  
pp. 518-524 ◽  
Author(s):  
Leonardo Pires Boava ◽  
Cíntia Helena Duarte Sagawa ◽  
Mariângela Cristofani-Yaly ◽  
Marcos Antonio Machado

Huanglongbing (HLB), caused by the bacterium ‘Candidatus Liberibacter’ spp., is currently one of the most serious diseases of citrus plants and has caused substantial economic losses. Thus far, there is no source of genetic resistance to HLB in the genus Citrus or its relatives. However, several studies have reported Poncirus trifoliata and some of its hybrids to be more tolerant to the disease. The main objective of this study was to report differences in the incidence of ‘Ca. L. asiaticus’ infection in citrandarin plants, hybrids from Sunki mandarin (Citrus sunki (Hayata) hort. ex Tanaka), and trifoliate orange Rubidoux (P. trifoliata (L.) Raf.)), after conducting an extensive survey under field conditions. These hybrid plants were established for approximately 7 years in an area with a high incidence of ‘Ca. L. asiaticus’-infected plants. We selected two experimental areas (area A and area B), located approximately 10 m apart. Area A consists of Pera sweet orange (C. sinensis (L.) Osb.) grafted onto 56 different citrandarin rootstocks. Area B consists of citrandarin scions grafted onto Rangpur lime (C. limonia Osb.) rootstock. Bacteria in the leaves and roots were detected using real-time quantitative polymerase chain reaction. The incidence of ‘Ca. L. asiaticus’-infected plants was 92% in area A and 14% in area B. Because infected plants occurred in both areas, we examined whether the P. trifoliata hybrid rootstock influenced HLB development and also determined the distribution of ‘Ca. L. asiaticus’ in Citrus tree tissues. Although this survey does not present evidence regarding the resistance of P. trifoliata and its hybrids in relation to bacteria or psyllids, future investigation, mainly using the most promising hybrids for response to ‘Ca. L. asiaticus’, will help us to understand the probable mechanism of defense or identifying compounds in P. trifoliata and its hybrids that are very important as strategy to combat HLB. Details of these results are presented and discussed in this article.


Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 279 ◽  
Author(s):  
Saptarshi Ghosh ◽  
Ola Jassar ◽  
Svetlana Kontsedalov ◽  
Galina Lebedev ◽  
Chunxia Wang ◽  
...  

Candidatus Liberibacter solanacerum (CLso), transmitted by Bactericera trigonica in a persistent and propagative mode causes carrot yellows disease, inflicting hefty economic losses. Understanding the process of transmission of CLso by psyllids is fundamental to devise sustainable management strategies. Persistent transmission involves critical steps of adhesion, cell invasion, and replication before passage through the midgut barrier. This study uses a transcriptomic approach for the identification of differentially expressed genes with CLso infection in the midguts, adults, and nymphs of B. trigonica and their putative involvement in CLso transmission. Several genes related to focal adhesion and cellular invasion were upregulated after CLso infection. Interestingly, genes involved with proper functionality of the endoplasmic reticulum (ER) were upregulated in CLso infected samples. Notably, genes from the endoplasmic reticulum associated degradation (ERAD) and the unfolded protein response (UPR) pathway were overexpressed after CLso infection. Marker genes of the ERAD and UPR pathways were also upregulated in Diaphorina citri when infected with Candidatus Liberibacter asiaticus (CLas). Upregulation of the ERAD and UPR pathways indicate induction of ER stress by CLso/CLas in their psyllid vector. The role of ER in bacteria–host interactions is well-documented; however, the ER role following pathogenesis of CLso/CLas is unknown and requires further functional validation.


2020 ◽  
Vol 21 (10) ◽  
pp. 3614
Author(s):  
Bo Li ◽  
Shuangchao Wang ◽  
Yi Zhang ◽  
Dewen Qiu

Huanglongbing (HLB) is a devastating citrus disease that has caused massive economic losses to the citrus industry worldwide. The disease is endemic in most citrus-producing areas of southern China, especially in the sweet orange orchards where soil acidification has intensified. In this work, we used lime as soil pH amendment to optimize soil pH and enhance the endurance capacity of citrus against Candidatus Liberibacter asiaticus (CLas). The results showed that regulation of soil acidity is effective to reduce the occurrence of new infections and mitigate disease severity in the presence of HLB disease. We also studied the associated molecular mechanism and found that acid soil improvement can (i) increase the root metabolic activity and up-regulate the expression of ion transporter-related genes in HLB-infected roots, (ii) alleviate the physiological disorders of sieve tube blockage of HLB-infected leaves, (iii) strengthen the citrus immune response by increasing the expression of genes involved in SAR and activating the salicylic acid signal pathway, (iv) up-regulate 55 proteins related to stress/defence response and secondary metabolism. This study contributes to a better understanding of the correlation between environment factors and HLB disease outbreaks and also suggests that acid soil improvement is of potential value for the management of HLB disease in southern China.


HortScience ◽  
2014 ◽  
Vol 49 (3) ◽  
pp. 367-377 ◽  
Author(s):  
Ute Albrecht ◽  
David G. Hall ◽  
Kim D. Bowman

Candidatus Liberibacter asiaticus (Las) is a phloem-limited bacterium associated with huanglongbing (HLB), one of the most destructive diseases of citrus in Florida and other citrus-producing countries. Natural transmission of Las occurs by the psyllid vector Diaphorina citri, but transmission can also occur through grafting with diseased budwood. As a result of the difficulty of maintaining Las in culture, screening of citrus germplasm for HLB resistance often relies on graft inoculation as the mode of pathogen transmission. This study evaluates transmission efficiencies and HLB progression in graft-inoculated and psyllid-inoculated citrus under greenhouse and natural conditions in the field. Frequencies of transmission in graft-inoculated greenhouse-grown plants varied between experiments and were as high as 90% in susceptible sweet orange plants 6 to 12 months after inoculation. Transmission frequency in a tolerant Citrus × Poncirus genotype (US-802) was 31% to 75%. In contrast, transmission of Las after controlled psyllid inoculation did not exceed 38% in any of four experiments in this study. Whereas the time from inoculation to detection of Las by polymerase chain reaction (PCR) was faster in psyllid-inoculated US-802 plants compared with graft-inoculated US-802 plants, it was similar in graft- and psyllid-inoculated sweet orange plants. HLB symptom expression was indistinguishable in graft- and psyllid-inoculated plants but was not always associated with the number of bacteria in affected leaves. The highest number of Las genomes per gram leaf tissue measured in sweet orange plants was one to four × 107 in graft-inoculated plants and one to two × 107 in psyllid-inoculated plants. Highest numbers measured in tolerant US-802 plants were one to three × 106 and two to six × 106, respectively. Compared with artificial inoculation in a greenhouse setting, natural inoculation of field-grown sweet orange trees occurred at a much slower pace, requiring more than 1 year for infection incidence to reach 50% and a minimum of 3 years to reach 100%.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 677
Author(s):  
Nabil Killiny ◽  
Faraj Hijaz ◽  
Pedro Gonzalez-Blanco ◽  
Shelley E. Jones ◽  
Myrtho O. Pierre ◽  
...  

Recently in Florida, foliar treatments using products with the antibiotics oxytetracycline and streptomycin have been approved for the treatment of citrus Huanglongbing (HLB), which is caused by the putative bacterial pathogen ‘Candidatus Liberibacter asiaticus’. Herein, we assessed the levels of oxytetracycline and ‘Ca. L. asiaticus’ titers in citrus trees upon foliar applications with and without a variety of commercial penetrant adjuvants and upon trunk injection. The level of oxytetracycline in citrus leaves was measured using an oxytetracycline ELISA kit and ‘Ca. L. asiaticus’ titer was measured using quantitative PCR. Low levels of oxytetracycline were taken up by citrus leaves after foliar sprays of oxytetracycline in water. Addition of various adjuvants to the oxytetracycline solution showed minimal effects on its uptake by citrus leaves. The level of oxytetracycline in leaves from trunk-injected trees was higher than those treated with all foliar applications. The titer of ‘Ca. L. asiaticus’ in the midrib of leaves from trees receiving oxytetracycline by foliar application was not affected after four days and thirty days of application, whereas the titer was significantly reduced in oxytetracycline-injected trees thirty days after treatment. Investigation of citrus leaves using microscopy showed that they are covered by a thick lipidized cuticle. Perforation of citrus leaf cuticle with a laser significantly increased the uptake of oxytetracycline, decreasing the titer of ‘Ca. L. asiaticus’ in citrus leaves upon foliar application. Taken together, our findings indicate that trunk injection is more efficient than foliar spray even after the use of adjuvants. Our conclusion could help in setting useful recommendations for the application of oxytetracycline in citrus to improve tree health, minimize the amount of applied antibiotic, reduce environmental exposure, and limit off-target effects.


2017 ◽  
Vol 107 (6) ◽  
pp. 662-668 ◽  
Author(s):  
Z. Zheng ◽  
F. Wu ◽  
L. B. Kumagai ◽  
M. Polek ◽  
X. Deng ◽  
...  

‘Candidatus Liberibacter asiaticus’ (CLas), an α-proteobacterium, is associated with citrus Huanglongbing (HLB; yellow shoot disease). In California, two cases of CLas have been detected in Los Angeles County, one in Hacienda Heights in 2012 and the other in San Gabriel in 2015. Although all infected trees were destroyed in compliance with a state mandate, citrus industry stakeholder concerns about HLB in California are high. Little is known about the biology of CLas, particularly the California strains, hindering effective HLB management efforts. In this study, next-generation sequencing technology (Illumina MiSeq) was employed to characterize the California CLas strains. Data sets containing >4 billion (Giga) bp of sequence were generated from each CLas sample. Two prophages (P-HHCA1-2 and P-SGCA5-1) were identified by the MiSeq read mapping technique referenced to two known Florida CLas prophage sequences, SC1 and SC2. P-HHCA1-2 was an SC2-like or Type 2 prophage of 38,989 bp in size. P-SGCA5-1 was an SC1-like or Type 1 prophage of 37,487 bp in size. Phylogenetic analysis revealed that P-HHCA1-2 was part of an Asiatic lineage within the Type 2 prophage group. Similarly, P-SGCA5-1 was part of an Asiatic lineage within Type 1 prophage group. The Asiatic relatedness of both P-HHCA1-2 and P-SGCA5-1 was further presented by single nucleotide polymorphism analysis at terL (encoding prophage terminase) that has been established for CLas strain differentiation. The presence of different prophages suggests that the two California CLas strains could have been introduced from different sources. An alternative explanation is that there was a mixed CLas population containing the two types of prophages, and limited sampling in a geographic region may not accurately depict the true CLas diversity. More accurate pathway analysis may be achieved by including more strains collected from the regions.


Sign in / Sign up

Export Citation Format

Share Document