scholarly journals Characterization of the Function of Two S1Fa-Like Family Genes From Populus trichocarpa

2021 ◽  
Vol 12 ◽  
Author(s):  
Huimin Zhao ◽  
Yani Niu ◽  
Hao Dong ◽  
Yaqi Jia ◽  
Yucheng Wang

S1Fa-like transcription factors (TFs) are small molecular weight proteins that contain both nuclear localization and DNA binding domains. However, the functions of S1Fa-like TFs are poorly understood. In the present study, we identified the S1Fa-like TFs from the Populus trichocarpa genome, which revealed two S1Fa-like TF genes, PtS1Fa1 and PtS1Fa2. PtS1Fa1 and PtS1Fa2 expression was suppressed by drought and salt stress, and was also significantly altered by ABA, MeJA, or SA treatment. Both PtS1Fa1 and PtS1Fa2 are nuclear proteins. Transgenic P. trichocarpa plants overexpressing PtS1Fa1 and PtS1Fa2, respectively, were generated. The plants overexpressing PtS1Fa2 showed increased fresh weight, chlorophyll content, and root length and weight compared with those in wild-type (WT) P. trichocarpa under drought conditions. Meanwhile, these phenotype traits of plants overexpressing PtS1Fa1 were similar to those of WT plants. Furthermore, overexpression of PtS1Fa2 reduced the malondialdehyde (MDA) content, electrolyte leakage, H2O2 and O2- contents, and increased superoxide dismutase (SOD) and peroxidase (POD) activities. The expression of SOD and POD was also induced by PtS1Fa2. However, overexpression of PtS1Fa1 failed to affect any of these physiological parameters or SOD and POD gene expression. These results suggested that PtS1Fa2 plays a role in drought tolerance, and confers drought tolerance by increase antioxidant activity to reduce reactive oxygen species (ROS) accumulation.

1993 ◽  
Vol 13 (12) ◽  
pp. 7257-7266 ◽  
Author(s):  
C Carriere ◽  
S Plaza ◽  
P Martin ◽  
B Quatannens ◽  
M Bailly ◽  
...  

After differential screening of a cDNA library constructed from quail neuroretina cells (QNR) infected with the v-myc-containing avian retrovirus MC29, we have isolated a cDNA clone, Pax-QNR, homologous to the murine Pax-6, which is mutated in the autosomal dominant mutation small eye of mice and in the disorder aniridia in humans. Here we report the characterization of the Pax-QNR proteins expressed in the avian neuroretina. From bacterially expressed Pax-QNR peptides, we obtained rabbit antisera directed against different domains of the protein: paired domain (serum 11), domain between the paired domain and homeodomain (serum 12), homeodomain (serum 13), and carboxyl-terminal part (serum 14). Sera 12, 13, and 14 were able to specifically recognize five proteins (48, 46, 43, 33, and 32 kDa) in the neuroretina. In contrast to proteins of 48, 46, and 43 kDa, proteins of 33 and 32 kDa were not recognized by the paired antiserum (serum 11). Paired-less and paired-containing proteins exhibited the same half-life (6 h) and were phosphorylated mostly on serine residues. Immunoprecipitations performed with subcellular fractions of neuroretinas showed that the paired-containing proteins were located in the nucleus, whereas the 33- and 32-kDa proteins were found essentially in the cytoplasmic compartment. However, immunofluorescence experiments performed after transient transfections showed that p46 and p33/32 were also located in vivo into the nucleus. Thus, the Pax-QNR/Pax-6 gene can produce proteins with two DNA-binding domains as well as proteins containing only the DNA-binding homeodomain.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 447-447
Author(s):  
Kimberly Cramer ◽  
Elisabeth Bolton ◽  
Margaret Nieborowska-Skorska ◽  
Sylwia Flis ◽  
Tomasz Skorski

Abstract Abstract 447 BCR-ABL1 transforms hematopoietic stem cells (HSCs) into leukemia stem cells (LSCs) to induce chronic myeloid leukemia in chronic phase (CML-CP). We detected that the most primitive LSCs display elevated levels of reactive oxygen species (ROS) and accumulate excessive numbers of potentially lethal DNA double-strand breaks (DSBs). We also reported that BCR-ABL1-transformed cells exhibit enhanced RAD51-mediated homologous recombination repair (HRR) activity occurring in S and G2/M cell cycle phases. In normal cells initiation of RAD51-mediated HRR is directed either by BRCA1– or RAD52–dependent mechanisms. Since BCR-ABL1 kinase downregulated BRCA1, LSCs containing high number of DSBs should depend more on RAD52 to promote HRR to repair lethal DSBs. We found that in vivo leukemogenic potential of BCR-ABL1 –positive RAD52−/− hematopoietic cells is abrogated in comparison to their BCR-ABL1 -positive RAD52+/+ counterparts. The absence of RAD52 in BCR-ABL1 –positive cells reduced the percentage of Lin−Kit+Sca1+ cells by >2-fold and inhibited their clonogenic potential and proliferation by >10-fold. In addition RAD52 knockout caused approximately 2-fold reduction of Lin−Kit+Sca1+CD34−Flt3− long-term LSCs (LT-LSCs) and Lin−Kit+Sca1+CD34+Flt3− short-term LSCs (ST-LSCs). Conversely, 4-fold accumulation of BCR-ABL1 –positive RAD52−/− Lin−Kit+Sca1+eFluor670max quiescent cells was detected in comparison to BCR-ABL1 –positive RAD52+/+ counterparts. These effects were accompanied by 2-fold reduction of the percentage of BCR-ABL1 –positive RAD52−/− cells in S and G2/M and 7-fold increase of these cells in sub-G1 when compared to BCR-ABL1 –positive RAD52+/+ counterparts. BCR-ABL1-positive RAD52−/− Lin−Kit+Sca1+ cells accumulated more DSBs than BCR-ABL1 –positive RAD52+/+ cells. These differences were not observed between non-transformed RAD52−/− and RAD52+/+ cells. Expression of the wild-type RAD52 reduced the accumulation of lethal DSBs and rescued the clonogenic potential and proliferation of BCR-ABL1-positive RAD52−/− Lin−Kit+Sca1+ cells. Downregulation of ROS with antioxidants vitamin E (VE) and N-acetyl-cysteine (NAC) exerted similar effect as restored expression of RAD52. Thus it appears that RAD52 is necessary to repair the extensive ROS-induced DSBs in LSC-enriched Lin−Kit+Sca1+ cells. BCR-ABL1 kinase does not affect the expression of RAD52 protein, but phosphorylates RAD52 on Y104. However, expression of RAD52(Y104F) phosphorylation-less mutant reduced the number of DSBs and rescued the clonogenic potential of BCR-ABL1-positive RAD52−/− Lin−Kit+Sca1+ cells in a similar way to the wild-type RAD52. Accordingly, RAD52-mediated DSB repair activity in CML-CP cells should not be affected by imatinib treatment. RAD52 mediates the annealing of complementarry DNA strands during DSB repair. To exert this function RAD52 has two DNA binding domains. Expression of RAD52(F79A) and RAD52(K102A) DNA binding-deficient mutants (each amino acid substitution inactivated different DNA binding domain) failed to prevent the accumulation of DSBs and did not rescue the clonogenic and proliferative potential of BCR-ABL1-positive RAD52−/− cells. In addition, RAD52(F79A), but not RAD52(Y104F) inhibited DSB repair by HRR. Therefore DNA binding capability of RAD52 appears essential for BCR-ABL1 –mediated leukemogenesis, but it is dispensable in normal hematopoietic cells. The “addiction” of BCR-ABL1 leukemia cells to RAD52 was confirmed by demonstration that RAD52(F79A) mutant inhibited clonogenic potential of CD34+ CML-CP cells, but not normal counterparts. Furthermore, to determine if RAD52 DNA binding domains could be targeted to selectively inhibit CML-CP, peptide aptamers containing RAD52 DNA binding domain amino acids sequence surrounding F79 were employed as potential decoys for RAD52 DNA binding. Aptamer containing F79, but not the A79 substitution, diminished the number of RAD52 foci and reduced the clonogenic potential and proliferation of CD34+ cells from CML-CP, but not from normal donors. In conclusion, we postulate that RAD52 is essential for BCR-ABL1 –mediated leukemogenesis and that DNA binding domains of RAD52 may be targeted for selective elimination of the proliferating CML-CP LSCs. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 15 (3) ◽  
pp. 1522-1535 ◽  
Author(s):  
W J Fredericks ◽  
N Galili ◽  
S Mukhopadhyay ◽  
G Rovera ◽  
J Bennicelli ◽  
...  

Alveolar rhabdomyosarcomas are pediatric solid tumors with a hallmark cytogenetic abnormality: translocation of chromosomes 2 and 13 [t(2;13) (q35;q14)]. The genes on each chromosome involved in this translocation have been identified as the transcription factor-encoding genes PAX3 and FKHR. The NH2-terminal paired box and homeodomain DNA-binding domains of PAX3 are fused in frame to COOH-terminal regions of the chromosome 13-derived FKHR gene, a novel member of the forkhead DNA-binding domain family. To determine the role of the fusion protein in transcriptional regulation and oncogenesis, we identified the PAX3-FKHR fusion protein and characterized its function(s) as a transcription factor relative to wild-type PAX3. Antisera specific to PAX3 and FKHR were developed and used to examine PAX3 and PAX3-FKHR expression in tumor cell lines. Sequential immunoprecipitations with anti-PAX3 and anti-FKHR sera demonstrated expression of a 97-kDa PAX3-FKHR fusion protein in the t(2;13)-positive rhabdomyosarcoma Rh30 cell line and verified that a single polypeptide contains epitopes derived from each protein. The PAX3-FKHR protein was localized to the nucleus in Rh30 cells, as was wild-type PAX3, in t(2;13)-negative A673 cells. In gel shift assays using a canonical PAX binding site (e5 sequence), we found that DNA binding of PAX3-FKHR was significantly impaired relative to that of PAX3 despite the two proteins having identical PAX DNA-binding domains. However, the PAX3-FKHR fusion protein was a much more potent transcriptional activator than PAX3 as determined by transient cotransfection assays using e5-CAT reporter plasmids. The PAX3-FKHR protein may function as an oncogenic transcription factor by enhanced activation of normal PAX3 target genes.


2019 ◽  
Vol 20 (3) ◽  
pp. 652 ◽  
Author(s):  
Wen-Jing Yang ◽  
Yong-Tao Du ◽  
Yong-Bin Zhou ◽  
Jun Chen ◽  
Zhao-Shi Xu ◽  
...  

Melatonin (N-acetyl-5-methoxytryptamine) is involved in many developmental processes and responses to various abiotic stresses in plants. Most of the studies on melatonin focus on its functions and physiological responses in plants, while its regulation mechanism remains unknown. Caffeic acid 3-O-methyltransferase (COMT) functions at a key step of the biosynthesis process of melatonin. In this study, a COMT-like gene, TaCOMT (Traes_1AL_D9035D5E0.1) was identified in common wheat (Triticum aestivum L.). Transient transformation in wheat protoplasts determined that TaCOMT is localized in cytoplasm. TaCOMT in wheat was induced by drought stress, gibberellin (GA)3 and 3-Indoleacetic acid (IAA), but not by ABA. In TaCOMT transgenic Arabidopsis, melatonin contents were higher than that in wild type (WT) plants. Under D-Mannitol treatment, the fresh weight of the transgenic Arabidopsis was significantly higher than WT, and transgenic lines had a stronger root system compared to WT. Drought tolerance assays in pots showed that the survival rate of TaCOMT-overexpression lines was significantly higher than that of WT lines. this phenotype was similar to that the WT lines treated with melatonin under drought condition. In addition, the TaCOMT transgenic lines had higher proline content and lower malondialdehyde (MDA) content compared to WT lines after drought treatment. These results indicated that overexpression of the wheat TaCOMT gene enhances drought tolerance and increases the content of melatonin in transgenic Arabidopsis. It could be one of the potential genes for agricultural applications.


1993 ◽  
Vol 13 (12) ◽  
pp. 7257-7266
Author(s):  
C Carriere ◽  
S Plaza ◽  
P Martin ◽  
B Quatannens ◽  
M Bailly ◽  
...  

After differential screening of a cDNA library constructed from quail neuroretina cells (QNR) infected with the v-myc-containing avian retrovirus MC29, we have isolated a cDNA clone, Pax-QNR, homologous to the murine Pax-6, which is mutated in the autosomal dominant mutation small eye of mice and in the disorder aniridia in humans. Here we report the characterization of the Pax-QNR proteins expressed in the avian neuroretina. From bacterially expressed Pax-QNR peptides, we obtained rabbit antisera directed against different domains of the protein: paired domain (serum 11), domain between the paired domain and homeodomain (serum 12), homeodomain (serum 13), and carboxyl-terminal part (serum 14). Sera 12, 13, and 14 were able to specifically recognize five proteins (48, 46, 43, 33, and 32 kDa) in the neuroretina. In contrast to proteins of 48, 46, and 43 kDa, proteins of 33 and 32 kDa were not recognized by the paired antiserum (serum 11). Paired-less and paired-containing proteins exhibited the same half-life (6 h) and were phosphorylated mostly on serine residues. Immunoprecipitations performed with subcellular fractions of neuroretinas showed that the paired-containing proteins were located in the nucleus, whereas the 33- and 32-kDa proteins were found essentially in the cytoplasmic compartment. However, immunofluorescence experiments performed after transient transfections showed that p46 and p33/32 were also located in vivo into the nucleus. Thus, the Pax-QNR/Pax-6 gene can produce proteins with two DNA-binding domains as well as proteins containing only the DNA-binding homeodomain.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 575-588 ◽  
Author(s):  
Tetsunari Fukushige ◽  
Barbara Goszczynski ◽  
Helen Tian ◽  
James D McGhee

Abstract We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located ∼5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intestinal development. This article explores whether elt-4 also has a role in intestinal development. Reporter fusions to the elt-4 promoter or reporter insertions into the elt-4 coding regions show that elt-4 is indeed expressed in the intestine, beginning at the 1.5-fold stage of embryogenesis and continuing into adulthood. elt-4 reporter fusions are also expressed in nine cells of the posterior pharynx. Ectopic expression of elt-4 cDNA within the embryo does not cause detectable ectopic expression of biochemical markers of gut differentiation; furthermore, ectopic elt-4 expression neither inhibits nor enhances the ectopic marker expression caused by ectopic elt-2 expression. A deletion allele of elt-4 was isolated but no obvious phenotype could be detected, either in the gut or elsewhere; brood sizes, hatching efficiencies, and growth rates were indistinguishable from wild type. We found no evidence that elt-4 provided backup functions for elt-2. We used microarray analysis to search for genes that might be differentially expressed between L1 larvae of the elt-4 deletion strain and wild-type worms. Paired hybridizations were repeated seven times, allowing us to conclude, with some confidence, that no candidate target transcript could be identified as significantly up- or downregulated by loss of elt-4 function. In vitro binding experiments could not detect specific binding of ELT-4 protein to candidate binding sites (double-stranded oligonucleotides containing single or multiple WGATAR sequences); ELT-4 protein neither enhanced nor inhibited the strong sequence-specific binding of the ELT-2 protein. Whereas ELT-2 protein is a strong transcriptional activator in yeast, ELT-4 protein has no such activity under similar conditions, nor does it influence the transcriptional activity of coexpressed ELT-2 protein. Although an elt-2 homolog was easily identified in the genomic sequence of the related nematode C. briggsae, no elt-4 homolog could be identified. Analysis of the changes in silent third codon positions within the DNA-binding domains indicates that elt-4 arose as a duplication of elt-2, some 25–55 MYA. Thus, elt-4 has survived far longer than the average duplicated gene in C. elegans, even though no obvious biological function could be detected. elt-4 provides an interesting example of a tandemly duplicated gene that may originally have been the same size as elt-2 but has gradually been whittled down to its present size of little more than a zinc finger. Although elt-4 must confer (or must have conferred) some selective advantage to C. elegans, we suggest that its ultimate evolutionary fate will be disappearance from the C. elegans genome.


2021 ◽  
Author(s):  
nikang ◽  
bang

Abstract Phospholipase D (PLD) is a crucial enzyme participated in membrane phospholipid catabolism. In this study, to explore the function of CbPLDγ in drought stress, a CbPLDγ gene, which is a part of CbPLD gene family and from Chorispora bungeana (C. bungeana) was cloned and encoded a protein of 859 amino acids with a calculated molecular weight of 96.3 kDa and with a PI(Isoionic Point) of 7.88. Real-time quantitative PCR (RT-qPCR) and Beta-glucuronidase (GUS) assay showed that CbPLDγ was accumulated dominantly in roots and hypocotyls. Compared with the control, CbPLDγ was positively responsed to the low temperature, salt, mannitol, and exogenous ABA. Subcellular localization analysis showed that the CbPLDγ was localized in the cell membrane. CbPLDγ-overexpression Arabidopsis under drought stress showed higher relative expression of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as highe content of proline, soluble proteion and soluble sugar. However, H2O2, malonaldehyde (MDA) content and electrolyte leakage (EL) were lower than wild-type Arabidopsis. These indicated that CbPLDγ was involved in the drought tolerance, and overexpression of CbPLDγ enhanced the drought tolerance in Arabidopsis. This is the first report about cloning and characterizing the gene of CbPLDγ from C. bungeana. It laid a foundation for further research and improvement of the PLD gene family of C. bungeana.


2004 ◽  
Vol 279 (44) ◽  
pp. 45744-45752 ◽  
Author(s):  
Hwan Youn ◽  
Robert L. Kerby ◽  
Gary P. Roberts

The CO-specific heme-based sensor CooA regulates the ability ofRhodospirillum rubrumto grow on CO as an energy source. Only CO triggers the conformational change of CooA essential for the protein to function as a transcriptional activator. A structurally informed mutagenesis, followed by anin vivoscreening method, allowed the isolation of a series of novel CooA variants that show very substantial response to imidazole. Compared with wild-type CooA, the ligand selectivity between imidazole and CO had been changed in some variants by roughly three orders of magnitude. Remarkably, different CooA variants also showed the ability to discriminate among imidazole derivatives, strongly implying a mechanism of precise interactions between the affected residues and the various ligands. Although wild-type CooA and imidazole-responsive CooA variants appear to recognize their respective ligands by fundamentally different mechanisms, several lines of evidence suggest that they respond by a similar C-helix repositioning that results in the rearrangement of the DNA-binding domains responsible for specific DNA contact. These results have implications for the molecular basis of both the imidazole responsiveness in the variants and the stringent CO specificity of wild-type CooA.


Sign in / Sign up

Export Citation Format

Share Document