scholarly journals AtCRY2 Negatively Regulates the Functions of AtANN2 and AtANN3 in Drought Tolerance by Affecting Their Subcellular Localization and Transmembrane Ca2+ Flow

2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Liu ◽  
Leyan Du ◽  
Qiushi Li ◽  
Jingda Kang ◽  
Qi Guo ◽  
...  

Annexins are a multifunctional class of calcium-binding proteins in plants, and their physiological functions and regulation in response to drought stress remain to be elucidated. Here, we found that AtANN2 and AtANN3 conferred to drought tolerance under short-day and long-day conditions, respectively. Under their functional photoperiod, AtANN2 and AtANN3 gene expression was enhanced in the mannitol-treated roots, and their encoded proteins were rapidly targeted to the plasma membrane, and mediated significant Ca2+ flows across the plasma membrane. Cryptochromes as photoreceptors can not only sense the photoperiod and regulate ion channels on the plasma membrane to influence ion flow but also induce downstream physiological responses. AtCRY2 repressed the functions of AtANN2 and AtANN3 by affecting their plasma membrane localization and inhibited AtANN2- and AtANN3-dependent transmembrane Ca2+ flow in response to drought stress. Taken together, these results uncover a mechanism linking Annexins-AtCRY2 to transmembrane Ca2+ flow and resulting in enhanced drought tolerance in Arabidopsis.

2018 ◽  
Vol 46 (2) ◽  
pp. 679-687 ◽  
Author(s):  
Preeyanuch LARKUNTHOD ◽  
Noppawan NOUNJAN ◽  
Jonaliza L SIANGLIW ◽  
Theerayut TOOJINDA ◽  
Jirawat SANITCHON ◽  
...  

Many of the economically important rice cultivars including ‘Khao Dawk Mali 105’ (KDML105) or jasmine rice, one of the world’s famous rice exported from Thailand suffers from drought due to erratic rainfalls and limited irrigation. To improve drought tolerance and reserve genetic background of KDML105, chromosome segment substitution lines (CSSL) containing drought tolerant quantitative trait loci (DT-QTL) has been previously developed by backcrossing between KDML105 and drought tolerant donor, IR58586-F2-CA-143 (DH212). To understand the physiological responses related to drought tolerance in CSSL lines compared to parents, two CSSLs namely CSSL1-16 and CSSL1-18, respectively were used in this study. Twenty-one-d-old hydroponically grown plants were subjected to 20% PEG for 0, 7, 14 d and then recovered from stress for 3 d. The results indicated that CSSL lines especially, CSSL1-16 showed better performance under drought stress compared to their recurrent parent. Drought tolerance superior CSSL1-16 line was indicated by high water status (high relative water content and leaf water potential), good osmotic adjustment, high proline and greater membrane stability. Moreover, this line was able to resume growth after stress recovery whereas other lines/cultivar could not recover. Similarly, drought tolerant donor showed high water status suggesting that well-maintained plant water status was associated with drought tolerant trait. It could be concluded that the highest drought tolerant line was CSSL1-16 followed by DH212, CSSL1-18 and KDML105. It would be interesting to go further into introgressed section in CSSL1-16 to identify potential candidate genes in DT-QTL for breeding drought tolerant rice in the future.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Biruk A. Feyissa ◽  
Muhammad Arshad ◽  
Margaret Y. Gruber ◽  
Susanne E. Kohalmi ◽  
Abdelali Hannoufa

Abstract Background Developing Medicago sativa L. (alfalfa) cultivars tolerant to drought is critical for the crop’s sustainable production. miR156 regulates various plant biological functions by silencing SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. Results To understand the mechanism of miR156-modulated drought stress tolerance in alfalfa we used genotypes with altered expression levels of miR156, miR156-regulated SPL13, and DIHYDROFLAVONOL-4-REDUCTASE (DFR) regulating WD40–1. Previously we reported the involvement of miR156 in drought tolerance, but the mechanism and downstream genes involved in this process were not fully studied. Here we illustrate the interplay between miR156/SPL13 and WD40–1/DFR to regulate drought stress by coordinating gene expression with metabolite and physiological strategies. Low to moderate levels of miR156 overexpression suppressed SPL13 and increased WD40–1 to fine-tune DFR expression for enhanced anthocyanin biosynthesis. This, in combination with other accumulated stress mitigating metabolites and physiological responses, improved drought tolerance. We also demonstrated that SPL13 binds in vivo to the DFR promoter to regulate its expression. Conclusions Taken together, our results reveal that moderate relative miR156 transcript levels are sufficient to enhance drought resilience in alfalfa by silencing SPL13 and increasing WD40–1 expression, whereas higher miR156 overexpression results in drought susceptibility.


2021 ◽  
Vol 22 (24) ◽  
pp. 13402
Author(s):  
Fawang Liu ◽  
Tahir Ali ◽  
Zhong Liu

Asarum sieboldii Miq. is a leading economic crop and a traditional medicinal herb in China. Leaf-blade and petiole are the only aerial tissues of A. sieboldii during the vegetative growth, playing a vital role in the accumulation and transportation of biomass energy. They also act as critical indicators of drought in agricultural management, especially for crops having underground stems. During drought, variations in the morphology and gene expression of the leaves and petioles are used to control agricultural irrigation and production. Besides, such stress can also alter the differential gene expression in these tissues. However, little is known about the drought-tolerant character of the aerial parts of A. sieboldii. In this study, we examined the physiological, biochemical and transcriptomic responses to the drought stress in the leaf blades and petioles of A. sieboldii. The molecular mechanism, involving in drought stress response, was elucidated by constructing the cDNA libraries and performing transcriptomic sequencing. Under drought stress, a total of 2,912 and 2,887 unigenes were differentially expressed in the leaf blade and petiole, respectively. The detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in drought tolerance. In response to drought, the leaf blade and petiole displayed a general physiological character, a higher SOD and POD activity, a higher MDA content and lower chlorophyll content. Three unigenes encoding POD were up-regulated, which can improve POD activity. Essential oil in petiole was extracted. The relative contents of methyleugenol and safrole in essential oil were increased from 0.01% to 0.05%, and 3.89% to 16.97%, respectively, while myristicin slightly reduced from 24.87% to 21.52%. Additionally, an IGS unigene, involved in eugenol biobiosynthesis, was found up-regulated under drought stress, which was predicated to be responsible for the accumulation of methyleugenol and safrole. Simple sequence repeats (SSRs) were characterized in of A. sieboldii, and a total of 5,466 SSRs were identified. Among them, mono-nucleotides were the most abundant repeat units, accounting for 44.09% followed by tri-, tetra-, penta and hexa-nucleotide repeats. Overall, the present work provides a valuable resource for the population genetics studies of A. sieboldii. Besides, it provides much genomic information for the functional dissection of the drought-resistance in A. sieboldii., which will be useful to understand the bio-regulatory mechanisms linked with drought-tolerance to enhance its yield.


2011 ◽  
pp. 74-103
Author(s):  
Corina Hayano-Kanashiro ◽  
Carlos Calderón-Vázquez ◽  
Enrique Ibarra-Laclette ◽  
Luis Herrera-Estrella ◽  
June Simpson

2017 ◽  
Vol 217 ◽  
pp. 164-172 ◽  
Author(s):  
Mohammadreza Pourghayoumi ◽  
Davood Bakhshi ◽  
Majid Rahemi ◽  
Ali Akbar Kamgar-Haghighi ◽  
Ali Aalami

2019 ◽  
Author(s):  
Wei Dong ◽  
Juan Lu ◽  
Xuejing Zhang ◽  
Yan Wu ◽  
Kaela Lettieri ◽  
...  

SUMMARYMechanisms coupling the atypical PKC (aPKC) kinase activity to its subcellular localization are essential for cell polarization. Unlike other members of the PKC family, aPKC has no well-defined plasma membrane (PM) or calcium binding domains, leading to the assumption that its subcellular localization relies exclusively on protein-protein interactions. Here we show that in both Drosophila and mammalian cells the pseudosubstrate region (PSr) of aPKC acts as a polybasic domain capable of targeting aPKC to the PM via electrostatic binding to PM PI4P and PI(4,5)P2. However, physical interaction between aPKC and Par-6 is required for the PM-targeting of aPKC, likely by allosterically exposing the PSr to bind PM. Binding of Par-6 also inhibits aPKC kinase activity and such inhibition can be relieved through Par-6 interaction with apical polarity protein Crumbs. Our data suggest a potential mechanism in which allosteric regulation of polybasic PSr by Par-6 couples the control of both aPKC subcellular localization and spatial activation of its kinase activity.eTOC SummaryDong et al. discover that the pseudo-substrate region (PSr) in aPKC is a polybasic domain capable of electrostatically targeting aPKC to plasma membrane. Allosteric regulation of PSr by Par-6 couples the control of both aPKC subcellular localization and spatial activation of kinase activity.


Sign in / Sign up

Export Citation Format

Share Document