scholarly journals The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions

2021 ◽  
Vol 12 ◽  
Author(s):  
Jan Petersen ◽  
Anxhela Rredhi ◽  
Julie Szyttenholm ◽  
Sabine Oldemeyer ◽  
Tilman Kottke ◽  
...  

Algae are photosynthetic eukaryotic (micro-)organisms, lacking roots, leaves, and other organs that are typical for land plants. They live in freshwater, marine, or terrestrial habitats. Together with the cyanobacteria they contribute to about half of global carbon fixation. As primary producers, they are at the basis of many food webs and they are involved in biogeochemical processes. Algae are evolutionarily distinct and are derived either by primary (e.g., green and red algae) or secondary endosymbiosis (e.g., diatoms, dinoflagellates, and brown algae). Light is a key abiotic factor needed to maintain the fitness of algae as it delivers energy for photosynthesis, regulates algal cell- and life cycles, and entrains their biological clocks. However, excess light can also be harmful, especially in the ultraviolet range. Among the variety of receptors perceiving light information, the cryptochromes originally evolved as UV-A and blue-light receptors and have been found in all studied algal genomes so far. Yet, the classification, biophysical properties, wavelength range of absorbance, and biological functions of cryptochromes are remarkably diverse among algal species, especially when compared to cryptochromes from land plants or animals.

Author(s):  
Wenqiao Wayne Yuan ◽  
Yan Cui ◽  
Z. J. Pei

Five methods, namely adsorption, covalent binding, encapsulation, entrapment, and cross-linking, for algae immobilization were briefly reviewed in this article. The immobilization capabilities of four solid carrier materials (polystyrene, polyurethane, polyethylene, and cross-linked polyethylene) with two algal species (Nannochloropsis oculata and Scendesmus dimorphus) were tested. After 14 days of immobilization, polystyrene foam showed the best cell attachment and was covered by algae cells not only on the outer surface but also inside the porous spaces of the carrier. The cross-linked polyethylene also showed good attachment and growth of algae cells. Between the two algae species, N. oculata showed better cell attachment than S. dimorphus on all four materials indicating that cell characteristics played an important role in cell-surface interactions. The Derjaguin & Landau and Verwey & Overbeek (DLVO) theory was applied to understand the interaction mechanism and predicted attachment trends were found qualitatively accurate in matching the experimental results.


1984 ◽  
Vol 222 (1227) ◽  
pp. 215-230 ◽  

Colony morphology, rates of production and respiration, translocation of carbon from symbiotic algae to host, and the daily contribution of carbon fixed by zooxanthellae to animal respiration demands (CZAR) in phenotypes of Stylophora pistillata from 3 and 35 m were compared. Corals from 35 m showed an increase in branch density, a decrease in zooxanthellae density, and an increase in chlorophyll a per algal cell when compared to colonies from 3m. These changes are explained as adaptations to limited photosynthetically active radiation at the deeper depth. Photosynthetic efficiency was higher at 35 m, as evidenced by a production rate 25% that at 3 m, but with light only about 8% that of shallow water irradiance. Respiration of deeper corals decreased by a half. A depth-specific respiratory decline was displayed by both the algae and the animal fractions. Decreased coral animal respiration appears to be a direct function of decreased photosynthetically fixed carbon availability, and to be an immediate response to daily carbon input. Decreased carbon availability to the host animal at 35 m was a consequence of both decreased net carbon fixation and decreased percentage of net fixed carbon translocated to the host. The daily CZAR at 35 m was less than half that at 3m. Mean CZAR at 35 m was 78%, suggesting that deeper corals have an obligate requirement for heterotrophically obtained carbon. By contrast, corals from 3m, which displayed a mean CZAR of 157%, appeared to be photo trophic with respect to carbon required for respiration. Altered trophic strategies with depth were confirmed by daily carbon budgets calculated for average size corals from both depths. Multiple correlation tests of all parameters confirmed the utility of expressing production and respiration measures in terms of unit surface area. However, significant correlations with other normalizing parameters were found, and their usefulness discussed.


2007 ◽  
Vol 139 (4) ◽  
pp. 443-471 ◽  
Author(s):  
H. V. Danks

AbstractIn cold climates most aquatic habitats are frozen for many months. Nevertheless, even in such regions the conditions in different types of habitat, in different parts of one habitat, and from one year to the next can vary considerably; some water bodies even allow winter growth. Winter cold and ice provide challenges for aquatic insects, but so do high spring flows, short, cool summers, and unpredictable conditions. General adaptations to cope with these constraints, depending on species and habitat, include the use of widely available foods, increased food range, prolonged development (including development lasting more than one year per generation), programmed life cycles with diapause and other responses to environmental cues (often enforcing strict univoltinism), and staggered development. Winter conditions may be anticipated not only by diapause and related responses but also by movement for the winter to terrestrial habitats, to less severe aquatic habitats, or to different parts of the same habitat, and by construction of shelters. Winter itself is met by various types of cold hardiness, including tolerance of freezing in at least some species, especially chironomid midges, and supercooling even when surrounded by ice in others. Special cocoons provide protection in some species. A few species move during winter or resist anoxia beneath ice. Spring challenges of high flows and ice scour may be withstood or avoided by wintering in less severe habitats, penetrating the substrate, or delaying activity until after peak flow. However, where possible species emerge early in the spring to compensate for the shortness of the summer season, a trait enhanced (at least in some lentic habitats) by choosing overwintering sites that warm up first in spring. Relatively low summer temperatures are offset by development at low temperatures, by selection of warm habitats and microhabitats, and in adults by thermoregulation and modified mating activity. Notwithstanding the many abiotic constraints in cold climates, aquatic communities are relatively diverse, though dominated by taxa that combine traits such as cold adaptation with use of the habitats and foods that are most widely available and most favourable. Consequently, except in the most severe habitats, food chains and community structure are complex even at high latitudes and elevations, including many links between aquatic and terrestrial habitats. Despite the complex involvement of aquatic insects in these cold-climate ecosystems, we know relatively little about the physiological and biochemical basis of their cold hardiness and its relationship to habitat conditions, especially compared with information about terrestrial species from the same regions.


2003 ◽  
Vol 81 (5) ◽  
pp. 844-851 ◽  
Author(s):  
F Stephen Dobson ◽  
Bertram Zinner ◽  
Marina Silva

Two hypotheses have been suggested to explain the form of interspecific scaling of organismal characteristics to body size, such as the well-known increase in total metabolism with body mass. A hypothesis based on simple Euclidean geometry suggests that the scaling of many biological variables to body size should have a scaling exponent of 2/3, or [Formula: see text]0.667. On the other hand, according to a hypothesis based on fractal dimensions, the relationship between biological variables and body mass should have a scaling exponent of 0.750. We conducted a power analysis of the predicted exponents of scaling under the Euclidean and fractal hypotheses, using average adult body masses and population densities collected from the published literature on mammalian species. The collected data reflect 987 mammal populations from a broad variety of terrestrial habitats. Using statistical methods we determined the sample sizes required to decide between the values of the scaling exponent of the density-to-mass relationship based on the Euclidean (–0.667) and fractal (–0.750) hypotheses. Non-linearities in the dataset and insufficient power plagued our tests of the predictions. We found that mammalian species weighing less than 100 kg had a linear scaling pattern, sufficient power to reveal a difference between the scaling coefficients –0.667 and –0.750, and an actual scaling coefficient of –0.719 (barely significantly different from –0.667 but not from –0.750). Thus, our results support the fractal hypothesis, though the support was not particularly strong, which suggests that the relationship between body mass and population density should have a scaling exponent of –0.750.


2021 ◽  
Author(s):  
Jakub Dan Zarsky ◽  
Vojtech Zarsky ◽  
Martin Hanacek ◽  
Viktor Zarsky

For tens of millions of years (Ma) the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 to 635 Ma before present - Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants, but on a comprehensive set of eukaryotes, indicate within the Streptophyta, multicellular Charophyceae evolved in Mesoproterozoic to early Neoproterozoic, while Cryogenian is the time of likely Anydrophyta origin (common ancestor of Zygnematophyceae and Embryophyta) and also of Zygnematophyceae – Embryophyta split. Based on the combination of published phylogenomic studies and estimated diversification time comparisons we found strong support for the possibility Anydrophyta likely evolved in response to Cryogenian cooling, and that later in Cryogenian secondary simplification of multicellular Anydrophytes resulted in Zygnematophyceae diversification. We propose Marinoan geochemically documented expansion of first terrestrial flora has been represented not only by Chlorophyta, but also by Streptophyta – including the Anydrophyta – and later by Zygnematophyceae, thriving on glacial surfaces until today. It is possible multicellular early Embryophytes survived in less abundant, possibly relatively warmer refugia, relying more on mineral substrates allowing retention of flagella-based sexuality. Loss of flagella and sexual reproduction by conjugation evolved in Zygnematophyceae during Cryogenian in a remarkable convergent way as in Cryogenian-appearing zygomycetous fungi. We thus support the concept of the important basal cellular exaptations to terrestrial environments evolved in streptophyte algae and propose this was stimulated by the adaptation to glacial habitats dominating the Cryogenian Snowball Earth. Including the glacial lifestyle in the picture of the rise of land plants increases the parsimony of connecting different ecological, phylogenetic and physiological puzzles of the journey from aquatic algae to the terrestrial floras.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yunha Hwang ◽  
Dirk Schulze-Makuch ◽  
Felix L. Arens ◽  
Johan S. Saenz ◽  
Panagiotis S. Adam ◽  
...  

Abstract Background The hyperarid core of the Atacama Desert is an extremely harsh environment thought to be colonized by only a few heterotrophic bacterial species. Current concepts for understanding this extreme ecosystem are mainly based on the diversity of these few species, yet a substantial area of the Atacama Desert hyperarid topsoil is covered by expansive boulder accumulations, whose underlying microbiomes have not been investigated so far. With the hypothesis that these sheltered soils harbor uniquely adapted microbiomes, we compared metagenomes and geochemistry between soils below and beside boulders across three distantly located boulder accumulations in the Atacama Desert hyperarid core. Results Genome-resolved metagenomics of eleven samples revealed substantially different microbial communities in soils below and beside boulders, despite the presence of shared species. Archaea were found in significantly higher relative abundance below the boulders across all samples within distances of up to 205 km. These key taxa belong to a novel genus of ammonia-oxidizing Thaumarchaeota, Candidatus Nitrosodeserticola. We resolved eight mid-to-high quality genomes of this genus and used comparative genomics to analyze its pangenome and site-specific adaptations. Ca. Nitrosodeserticola genomes contain genes for ammonia oxidation, the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway, and acetate utilization indicating a chemolithoautotrophic and mixotrophic lifestyle. They also possess the capacity for tolerating extreme environmental conditions as highlighted by the presence of genes against oxidative stress and DNA damage. Site-specific adaptations of the genomes included the presence of additional genes for heavy metal transporters, multiple types of ATP synthases, and divergent genes for aquaporins. Conclusion We provide the first genomic characterization of hyperarid soil microbiomes below the boulders in the Atacama Desert, and report abundant and highly adapted Thaumarchaeaota with ammonia oxidation and carbon fixation potential. Ca. Nitrosodeserticola genomes provide the first metabolic and physiological insight into a thaumarchaeal lineage found in globally distributed terrestrial habitats characterized by various environmental stresses. We consequently expand not only the known genetic repertoire of Thaumarchaeota but also the diversity and microbiome functioning in hyperarid ecosystems.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
D. M. Metzler ◽  
A. Erdem ◽  
Y. H. Tseng ◽  
C. P. Huang

This paper investigated toxicity of three engineered nanoparticles (ENP), namely, Al2O3, SiO2, and TiO2to the unicellular green algae, exemplified byPseudokirchneriella subcapitatawith an emphasis on particle size. The changes in pH, cell counts, chlorophyll a, and lipid peroxidation were used to measure the responses of the algal species to ENP. The most toxic particle size was TiO2at 42 nm with an EC20 of 5.2 mg/L and Al2O3at 14–18 nm with an EC20 of 5.1 mg/L. SiO2was the least toxic with an EC20 of 318 mg/L. Toxicity was positively related to the surface charge of both ENP and algae. The chlorophyll content of the algal cells was influenced by the presence of ENP, which resulted in limited light and availability of nutrients due to increase in turbidity and nutrient adsorption onto the ENP surface, separately. Lipid peroxidation was attributed to reactive oxygen species (ROS). Fast reaction between algal cells and ROS due to direct contact between TiO2and algal cells is an important factor for lipid peroxidation.


2021 ◽  
Author(s):  
Giada Tortorelli ◽  
Carsten Rautengarten ◽  
Antony Bacic ◽  
Gabriela Segal ◽  
Berit Ebert ◽  
...  

AbstractSymbiodiniaceae algae are often photosymbionts of reef-building corals. The establishment of their symbiosis resembles a microbial infection where eukaryotic pattern recognition receptors (e.g. lectins) are thought to recognize a specific range of taxon-specific microbial-associated molecular patterns (e.g. glycans). The present study used the sea anemone, Exaiptasia diaphana and three species of Symbiodiniaceae (the homologous Breviolum minutum, the heterologous-compatible Cladocopium goreaui and the heterologous-incompatible Fugacium kawagutii) to compare the surface glycomes of three symbionts and explore the role of glycan–lectin interactions in host–symbiont recognition and establishment of symbiosis. We identified the nucleotide sugars of the algal cells, then examined glycans on the cell wall of the three symbiont species with monosaccharide analysis, lectin array technology and fluorescence microscopy of the algal cell decorated with fluorescently tagged lectins. Armed with this inventory of possible glycan moieties, we then assayed the ability of the three Symbiodiniaceae to colonize aposymbiotic E. diaphana after modifying the surface of one of the two partners. The Symbiodiniaceae cell-surface glycome varies among algal species. Trypsin treatment of the alga changed the rate of B. minutum and C. goreaui uptake, suggesting that a protein-based moiety is an essential part of compatible symbiont recognition. Our data strongly support the importance of D-galactose (in particular β-D-galactose) residues in the establishment of the cnidarian–dinoflagellate symbiosis, and we propose a potential involvement of L-fucose, D-xylose and D-galacturonic acid in the early steps of this mutualism.


2021 ◽  
Vol 9 (8) ◽  
pp. 1586
Author(s):  
Tatyana Darienko ◽  
Cecilia Rad-Menéndez ◽  
Christine N. Campbell ◽  
Thomas Pröschold

Most marine coccoid and sarcinoid green algal species have traditionally been placed within genera dominated by species from freshwater or soil habitats. For example, the genera Chlorocystis and Halochlorococcum contain exclusively marine species; however, their familial and ordinal affinities are unclear. They are characterized by a vegetative cell with lobated or reticulated chloroplast, formation of quadriflagellated zoospores and living epi- or endophytically within benthic macroalgae. They were integrated into the family Chlorochytriaceae which embraces all coccoid green algae with epi- or endophytic life phases. Later, they were excluded from the family of Chlorococcales based on studies of their life histories in culture, and transferred to their newly described order, Chlorocystidales of the Ulvophyceae. Both genera form a “Codiolum”-stage that serves as the unicellular sporophyte in their life cycles. Phylogenetic analyses of SSU and ITS rDNA sequences confirmed that these coccoid taxa belong to the Chlorocystidales, together with the sarcinoid genus Desmochloris. The biflagellated coccoid strains were members of the genus Sykidion, which represented its own order, Sykidiales, among the Ulvophyceae. Considering these results and the usage of the ITS-2/CBC approach revealed three species of Desmochloris, six of Chlorocystis, and three of Sykidion. Three new species and several new combinations were proposed.


Sign in / Sign up

Export Citation Format

Share Document