chloroplast formation
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 9 (8) ◽  
pp. 1586
Author(s):  
Tatyana Darienko ◽  
Cecilia Rad-Menéndez ◽  
Christine N. Campbell ◽  
Thomas Pröschold

Most marine coccoid and sarcinoid green algal species have traditionally been placed within genera dominated by species from freshwater or soil habitats. For example, the genera Chlorocystis and Halochlorococcum contain exclusively marine species; however, their familial and ordinal affinities are unclear. They are characterized by a vegetative cell with lobated or reticulated chloroplast, formation of quadriflagellated zoospores and living epi- or endophytically within benthic macroalgae. They were integrated into the family Chlorochytriaceae which embraces all coccoid green algae with epi- or endophytic life phases. Later, they were excluded from the family of Chlorococcales based on studies of their life histories in culture, and transferred to their newly described order, Chlorocystidales of the Ulvophyceae. Both genera form a “Codiolum”-stage that serves as the unicellular sporophyte in their life cycles. Phylogenetic analyses of SSU and ITS rDNA sequences confirmed that these coccoid taxa belong to the Chlorocystidales, together with the sarcinoid genus Desmochloris. The biflagellated coccoid strains were members of the genus Sykidion, which represented its own order, Sykidiales, among the Ulvophyceae. Considering these results and the usage of the ITS-2/CBC approach revealed three species of Desmochloris, six of Chlorocystis, and three of Sykidion. Three new species and several new combinations were proposed.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1254
Author(s):  
Alvin Sanjaya ◽  
Ryohsuke Muramatsu ◽  
Shiho Sato ◽  
Mao Suzuki ◽  
Shun Sasaki ◽  
...  

In Arabidopsis thaliana, the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) gene encodes a thylakoid membrane-localized protease involved in chloroplast development in leaf mesophyll cells. Recently, EGY1 was also found to be crucial for the maintenance of grana in mesophyll chloroplasts. To further explore the function of EGY1 in leaf tissues, we examined the phenotype of chloroplasts in the leaf epidermal guard cells and pavement cells of two 40Ar17+ irradiation-derived mutants, Ar50-33-pg1 and egy1-4. Fluorescence microscopy revealed that fully expanded leaves of both egy1 mutants showed severe chlorophyll deficiency in both epidermal cell types. Guard cells in the egy1 mutant exhibited permanent defects in chloroplast formation during leaf expansion. Labeling of plastids with CaMV35S or Protodermal Factor1 (PDF1) promoter-driven stroma-targeted fluorescent proteins revealed that egy1 guard cells contained the normal number of plastids, but with moderately reduced size, compared with wild-type guard cells. Transmission electron microscopy further revealed that the development of thylakoids was impaired in the plastids of egy1 mutant guard mother cells, guard cells, and pavement cells. Collectively, these observations demonstrate that EGY1 is involved in chloroplast formation in the leaf epidermis and is particularly critical for chloroplast differentiation in guard cells.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 823
Author(s):  
Naoki Sato

Chloroplasts of plants and algae are currently believed to originate from a cyanobacterial endosymbiont, mainly based on the shared proteins involved in the oxygenic photosynthesis and gene expression system. The phylogenetic relationship between the chloroplast and cyanobacterial genomes was important evidence for the notion that chloroplasts originated from cyanobacterial endosymbiosis. However, studies in the post-genomic era revealed that various substances (glycolipids, peptidoglycan, etc.) shared by cyanobacteria and chloroplasts are synthesized by different pathways or phylogenetically unrelated enzymes. Membranes and genomes are essential components of a cell (or an organelle), but the origins of these turned out to be different. Besides, phylogenetic trees of chloroplast-encoded genes suggest an alternative possibility that chloroplast genes could be acquired from at least three different lineages of cyanobacteria. We have to seriously examine that the chloroplast genome might be chimeric due to various independent gene flows from cyanobacteria. Chloroplast formation could be more complex than a single event of cyanobacterial endosymbiosis. I present the “host-directed chloroplast formation” hypothesis, in which the eukaryotic host cell that had acquired glycolipid synthesis genes as an adaptation to phosphate limitation facilitated chloroplast formation by providing glycolipid-based membranes (pre-adaptation). The origins of the membranes and the genome could be different, and the origin of the genome could be complex.


2020 ◽  
Vol 39 (22) ◽  
Author(s):  
Monique Liebers ◽  
François‐Xavier Gillet ◽  
Abir Israel ◽  
Kevin Pounot ◽  
Louise Chambon ◽  
...  

2020 ◽  
Author(s):  
Monique Liebers ◽  
François-Xavier Gillet ◽  
Abir Israel ◽  
Kevin Pounot ◽  
Louise Chambon ◽  
...  

AbstractThe initial greening of angiosperm occurs upon light-activation of photoreceptors that trigger photomorphogenesis followed with the development of chloroplasts. In these semi-autonomous organelles, the construction of the photosynthetic apparatus depends on the coordination of nuclear and plastid gene expression. Here we show that PAP8, as an essential subunit of the plastid-encoded RNA polymerase, is under the control of a regulatory element recognized by the photomorphogenic factor HY5. PAP8 is localized and active in both plastids and the nucleus and particularly essential for the formation of late photobodies. In the albino pap8 mutant, phytochrome-mediated signalling is altered, PIFs are maintained, HY5 is not stabilized, and GLK1 expression is impaired. PAP8 translocates into plastids losing its pre-sequence, interacts with the PEP, and using an unknown route or a retrograde transport, reaches the nucleus where it has the ability to interact with pTAC12/HMR/PAP5. Since PAP8 is required for the phytochrome-B-mediated signalling cascade and the reshaping of the PEP, it may coordinate nuclear gene expression with the PEP-driven chloroplastic gene expression during chloroplast biogenesis.


2019 ◽  
Vol 133 (1) ◽  
pp. 15-33 ◽  
Author(s):  
Naoki Sato

AbstractThe paradigm “cyanobacterial origin of chloroplasts” is currently viewed as an established fact. However, we may have to re-consider the origin of chloroplast membranes, because membranes are not replicated by their own. It is the genes for lipid biosynthetic enzymes that are inherited. In the current understandings, these enzymes became encoded by the nuclear genome as a result of endosymbiotic gene transfer from the endosymbiont. However, we previously showed that many enzymes involved in the synthesis of chloroplast peptidoglycan and glycolipids did not originate from cyanobacteria. Here I present results of comprehensive phylogenetic analysis of chloroplast enzymes involved in fatty acid and lipid biosynthesis, as well as additional chloroplast components related to photosynthesis and gene expression. Four types of phylogenetic relationship between chloroplast enzymes (encoded by the chloroplast and nuclear genomes) and cyanobacterial counterparts were found: type 1, chloroplast enzymes diverged from inside of cyanobacterial clade; type 2, chloroplast and cyanobacterial enzymes are sister groups; type 3, chloroplast enzymes originated from homologs of bacteria other than cyanobacteria; type 4, chloroplast enzymes diverged from eukaryotic homologs. Estimation of evolutionary distances suggested that the acquisition times of chloroplast enzymes were diverse, indicating that multiple gene transfers accounted for the chloroplast enzymes analyzed. Based on the results, I try to relax the tight logic of the endosymbiotic origin of chloroplasts involving a single endosymbiotic event by proposing alternative hypotheses. The hypothesis of host-directed chloroplast formation proposes that glycolipid synthesis ability had been acquired by the eukaryotic host before the acquisition of chloroplast ribosomes. Chloroplast membrane system could have been provided by the host, whereas cyanobacteria contributed to the genes for the genetic and photosynthesis systems, at various times, either before or after the formation of chloroplast membranes. The origin(s) of chloroplasts seems to be more complicated than the single event of primary endosymbiosis.


2000 ◽  
Vol 157 (4) ◽  
pp. 357-364 ◽  
Author(s):  
Branka Salopek-Sondi ◽  
Maja Kovač ◽  
Nikola Ljubešić ◽  
Volker Magnus

Sign in / Sign up

Export Citation Format

Share Document