scholarly journals Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohsen Yoosefzadeh-Najafabadi ◽  
Sepideh Torabi ◽  
Dan Tulpan ◽  
Istvan Rajcan ◽  
Milad Eskandari

In conjunction with big data analysis methods, plant omics technologies have provided scientists with cost-effective and promising tools for discovering genetic architectures of complex agronomic traits using large breeding populations. In recent years, there has been significant progress in plant phenomics and genomics approaches for generating reliable large datasets. However, selecting an appropriate data integration and analysis method to improve the efficiency of phenome-phenome and phenome-genome association studies is still a bottleneck. This study proposes a hyperspectral wide association study (HypWAS) approach as a phenome-phenome association analysis through a hierarchical data integration strategy to estimate the prediction power of hyperspectral reflectance bands in predicting soybean seed yield. Using HypWAS, five important hyperspectral reflectance bands in visible, red-edge, and near-infrared regions were identified significantly associated with seed yield. The phenome-genome association analysis of each tested hyperspectral reflectance band was performed using two conventional genome-wide association studies (GWAS) methods and a machine learning mediated GWAS based on the support vector regression (SVR) method. Using SVR-mediated GWAS, more relevant QTL with the physiological background of the tested hyperspectral reflectance bands were detected, supported by the functional annotation of candidate gene analyses. The results of this study have indicated the advantages of using hierarchical data integration strategy and advanced mathematical methods coupled with phenome-phenome and phenome-genome association analyses for a better understanding of the biology and genetic backgrounds of hyperspectral reflectance bands affecting soybean yield formation. The identified yield-related hyperspectral reflectance bands using HypWAS can be used as indirect selection criteria for selecting superior genotypes with improved yield genetic gains in large breeding populations.

2019 ◽  
Vol 10 ◽  
Author(s):  
Justin M. Luningham ◽  
Daniel B. McArtor ◽  
Anne M. Hendriks ◽  
Catharina E. M. van Beijsterveldt ◽  
Paul Lichtenstein ◽  
...  

2020 ◽  
Vol 46 (1) ◽  
pp. 86-97 ◽  
Author(s):  
Timothy Reynolds ◽  
Emma C. Johnson ◽  
Spencer B. Huggett ◽  
Jason A. Bubier ◽  
Rohan H. C. Palmer ◽  
...  

AbstractGenome-wide association studies and other discovery genetics methods provide a means to identify previously unknown biological mechanisms underlying behavioral disorders that may point to new therapeutic avenues, augment diagnostic tools, and yield a deeper understanding of the biology of psychiatric conditions. Recent advances in psychiatric genetics have been made possible through large-scale collaborative efforts. These studies have begun to unearth many novel genetic variants associated with psychiatric disorders and behavioral traits in human populations. Significant challenges remain in characterizing the resulting disease-associated genetic variants and prioritizing functional follow-up to make them useful for mechanistic understanding and development of therapeutics. Model organism research has generated extensive genomic data that can provide insight into the neurobiological mechanisms of variant action, but a cohesive effort must be made to establish which aspects of the biological modulation of behavioral traits are evolutionarily conserved across species. Scalable computing, new data integration strategies, and advanced analysis methods outlined in this review provide a framework to efficiently harness model organism data in support of clinically relevant psychiatric phenotypes.


2017 ◽  
Author(s):  
Roger L. Vallejo ◽  
Guangtu Gao ◽  
Sixin Liu ◽  
Breno O. Fragomeni ◽  
Alvaro G. Hernandez ◽  
...  

ABSTRACTBacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect QTL for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57K SNP array and a genome physical map have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered.


Sign in / Sign up

Export Citation Format

Share Document