scholarly journals Comparative Chloroplast Genomics of Sophora Species: Evolution and Phylogenetic Relationships in the Early-Diverging Legume Subfamily Papilionoideae (Fabaceae)

2021 ◽  
Vol 12 ◽  
Author(s):  
Min Liao ◽  
Xin-Fen Gao ◽  
Jun-Yi Zhang ◽  
Heng-Ning Deng ◽  
Bo Xu

The taxonomy and evolutionary history of Sophora L., a genus with high economic and medicinal value, remain uncertain due to the absence of genetic resource (especially in China) and low polymorphism of molecular markers. Our aim was to elucidate the molecular evolution and phylogenetic relationships in chloroplast genomes of Sophora species in the early-diverging legume subfamily Papilionoideae (Fabaceae). We reported nine Sophora chloroplast genome from China using Illumina sequencing. We performed a series of analyses with previously published genomes of Sophora species to investigate their genomic characteristics, identified simple sequence repeats, large repeat sequences, tandem repeats, and highly polymorphic loci. The genomes were 152,953–158,087 bp in length, and contained 111–113 unique genes, including 76–78 protein coding, 31 tRNA, and 4 rRNA. The expansion of inverted repeat boundary of Sophora resulted in rps12 entering into the LSC region and loss of trnT-CGU gene in some species. Also, we found an approximately 23 kb inversion between trnC-GCA and trnF-GAA within the genus. In addition, we identified seven highly polymorphic loci (pi (π) > 0.035) suitable for inferring the phylogeny of Sophora species. Among these, three regions also co-occurred with large repeat sequences and support use of repeats as a proxy for the identification of polymorphic loci. Based on whole chloroplast genome and protein-coding sequences data-set, a well-supported phylogenetic tree of Sophora and related taxa showed that this genus is monophyletic, but sect. Disamaea and sect. Sophora, are incongruent with traditional taxonomic classifications based on fruit morphology. Our finding provides significant genetic resources to support further investigation into the phylogenetic relationship and evolution of the genus Sophora.

2019 ◽  
Vol 42 (4) ◽  
pp. 601-611 ◽  
Author(s):  
Yan Li ◽  
Liukun Jia ◽  
Zhihua Wang ◽  
Rui Xing ◽  
Xiaofeng Chi ◽  
...  

Abstract Saxifraga sinomontana J.-T. Pan & Gornall belongs to Saxifraga sect. Ciliatae subsect. Hirculoideae, a lineage containing ca. 110 species whose phylogenetic relationships are largely unresolved due to recent rapid radiations. Analyses of complete chloroplast genomes have the potential to significantly improve the resolution of phylogenetic relationships in this young plant lineage. The complete chloroplast genome of S. sinomontana was de novo sequenced, assembled and then compared with that of other six Saxifragaceae species. The S. sinomontana chloroplast genome is 147,240 bp in length with a typical quadripartite structure, including a large single-copy region of 79,310 bp and a small single-copy region of 16,874 bp separated by a pair of inverted repeats (IRs) of 25,528 bp each. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs, with 18 duplicates in the IRs. The gene content and organization are similar to other Saxifragaceae chloroplast genomes. Sixty-one simple sequence repeats were identified in the S. sinomontana chloroplast genome, mostly represented by mononucleotide repeats of polyadenine or polythymine. Comparative analysis revealed 12 highly divergent regions in the intergenic spacers, as well as coding genes of matK, ndhK, accD, cemA, rpoA, rps19, ndhF, ccsA, ndhD and ycf1. Phylogenetic reconstruction of seven Saxifragaceae species based on 66 protein-coding genes received high bootstrap support values for nearly all identified nodes, suggesting a promising opportunity to resolve infrasectional relationships of the most species-rich section Ciliatae of Saxifraga.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kaihui Zhao ◽  
Lianqiang Li ◽  
Hong Quan ◽  
Junbo Yang ◽  
Zhirong Zhang ◽  
...  

Zanthoxylum L. is an economic crop with a long history of cultivation and domestication and has important economic, ecological, and medicinal value. To solve the classification problems caused by the similar morphological characteristics of Zanthoxylum and establish a credible phylogenetic relationship, we sequenced and annotated six Zanthoxylum chloroplast (cp) genomes (Z. piasezkii, Z. armatum, Z. motuoense, Z. oxyphyllum, Z. multijugum, and Z. calcicola) and combined them with previously published genomes for the Zanthoxylum species. We used bioinformatics methods to analyze the genomic characteristics, contraction, and expansion of inverted repeat (IR) regions; differences in simple sequence repeats (SSRs) and long repeat sequences; species pairwise Ka/Ks ratios; divergence hotspots; and phylogenetic relationships of the 14 Zanthoxylum species. The results revealed that cp genomes of Zanthoxylum range in size from 158,071 to 158,963 bp and contain 87 protein-coding, 37 tRNA, and 8 rRNA genes. Seven mutational hotspots were identified as candidate DNA barcode sequences to distinguish Zanthoxylum species. The phylogenetic analysis strongly supported the genus Fagara as a subgenus of Zanthoxylum and proposed the possibility of a new subgenus in Zanthoxylum. The availability of these genomes will provide valuable information for identifying species, molecular breeding, and evolutionary analysis of Zanthoxylum.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chao Luo ◽  
Wulue Huang ◽  
Huayu Sun ◽  
Huseyin Yer ◽  
Xinyi Li ◽  
...  

Abstract Background Impatiens L. is a genus of complex taxonomy that belongs to the family Balsaminaceae (Ericales) and contains approximately 1000 species. The genus is well known for its economic, medicinal, ornamental, and horticultural value. However, knowledge about its germplasm identification, molecular phylogeny, and chloroplast genomics is limited, and taxonomic uncertainties still exist due to overlapping morphological features and insufficient genomic resources. Results We sequenced the chloroplast genomes of six different species (Impatiens chlorosepala, Impatiens fanjingshanica, Impatiens guizhouensis, Impatiens linearisepala, Impatiens loulanensis, and Impatiens stenosepala) in the karst area of China and compared them with those of six previously published Balsaminaceae species. We contrasted genomic features and repeat sequences, assessed sequence divergence and constructed phylogenetic relationships. Except for those of I. alpicola, I. pritzelii and I. glandulifera, the complete chloroplast genomes ranging in size from 151,366 bp (I. alpicola) to 154,189 bp (Hydrocera triflora) encoded 115 distinct genes [81 protein-coding, 30 transfer RNA (tRNA), and 4 ribosomal RNA (rRNA) genes]. Moreover, the characteristics of the long repeat sequences and simple sequence repeats (SSRs) were determined. psbK-psbI, trnT-GGU-psbD, rpl36-rps8, rpoB-trnC-GCA, trnK-UUU-rps16, trnQ-UUG, trnP-UGG-psaJ, trnT-UGU-trnL-UAA, and ycf4-cemA were identified as divergence hotspot regions and thus might be suitable for species identification and phylogenetic studies. Additionally, the phylogenetic relationships based on Maximum likelihood (ML) and Bayesian inference (BI) of the whole chloroplast genomes showed that the chloroplast genome structure of I. guizhouensis represents the ancestral state of the Balsaminaceae family. Conclusion Our study provided detailed information about nucleotide diversity hotspots and the types of repeats, which can be used to develop molecular markers applicable to Balsaminaceae species. We also reconstructed and analyzed the relationships of some Impatiens species and assessed their taxonomic statuses based on the complete chloroplast genomes. Together, the findings of the current study might provide valuable genomic resources for systematic evolution of the Balsaminaceae species.


Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Ji-Hyeon Jeon ◽  
Seung-Chul Kim

Species belonging to Rosa section Synstylae (Rosaceae) are mainly distributed in East Asia, and represent recently diverged lineages within the genus. Over decades, inferring phylogenetic relationships within section Synstylae have been exceptional challenges, due to short branch lengths and low support values. Of approximately 36 species in the section Synstylae, Rosa multiflora, Rosa luciae and Rosa maximowicziana are widely distributed in the Sino-Japanese floristic region. In this study, we assembled chloroplast genomes of these three species to compare the genomic features within section Synstylae, and to compare with other infrageneric groups. We found that three Rosa sect. Synstylae species had lost infA genes with pseudogenization, and they were almost identical to each other. Two protein-coding gene regions (ndhF and ycf1) and five non-coding regions (5’matK-trnK, psbI-trnS-trnG, rps16-trnG, rpoB-trnC, and rps4-trnT) were identified as being highly informative markers. Within three section Synstylae chloroplast genomes, 85 simple sequence repeat (SSR) motifs were detected, of which at least 13 motifs were identified to be effective markers. The phylogenetic relationships of R. multiflora, R. luciae and R. maximowicziana could not be resolved, even with chloroplast genome-wide data. This study reveals the chloroplast genomic data of Rosa sect. Synstylae, and it provides valuable markers for DNA barcoding and phylogenetic analyses for further studies.


Author(s):  
Kyoung Su Choi ◽  
Keum Seon Jeong ◽  
Young-Ho Ha ◽  
Kyung Choi

Genus Clematis is one of the largest within Ranunculaceae. Here we report the chloroplast genome of two Clematis species, C. brachyura and C. trichotoma endemic to Korea. The chloroplast genome lengths of C. brachyura and C. trichotoma are 159,532 bp and 159,170 bp, respectively. Gene contents in the complete chloroplast genomes of these two Clematis species are identical to that of most Ranunculaceae and other angiosperms. However, our data results demonstrated that genus Clematis has inversion and rearrangement events concerning gene rps4 gene, rps16 to trnH region, and trnL to ndhC region, and IR regions expansion. Comparison of IR regions among Ranunculaceae species revealed that Clematis species contained six protein coding genes (infA, rps8, rpl14, rpl16, rps3, and rpl22) usually found in the long single copy (LSC) region of other species. Phylogenetic analysis demonstrated that genus Clematis is closely related to genus Ranunculus. Differences in repeat structure, substitution rates, and IR expansion in genera Clematis and Ranunculus, explained their relationship. Clematis species showed slightly higher tandem repeats content than Ranunculus species. The six protein-coding genes showed lower synonymous substitution rates in the IR of Clematis species than in the LSC of Ranunculus species. Overall, the chloroplast genomes and results presented here provide important information on the evolution of Ranunculaceae.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1229
Author(s):  
Dhafer A. Alzahrani ◽  
Enas J. Albokhari ◽  
Samaila S. Yaradua ◽  
Abidina Abba

This study presents for the first time the complete chloroplast genomes of four medicinal species in the Capparaceae family belonging to two different genera, Cadaba and Maerua (i.e., C. farinosa, C. glandulosa, M. crassifolia and M. oblongifolia), to investigate their evolutionary process and to infer their phylogenetic positions. The four species are considered important medicinal plants, and are used in the treatment of many diseases. In the genus Cadaba, the chloroplast genome ranges from 156,481 bp to 156,560 bp, while that of Maerua ranges from 155,685 bp to 155,436 bp. The chloroplast genome of C. farinosa, M. crassifolia and M. oblongifolia contains 138 genes, while that of C. glandulosa contains 137 genes, comprising 81 protein-coding genes, 31 tRNA genes and 4 rRNA genes. Out of the total genes, 116–117 are unique, while the remaining 19 are replicated in inverted repeat regions. The psbG gene, which encodes for subunit K of NADH dehydrogenase, is absent in C. glandulosa. A total of 249 microsatellites were found in the chloroplast genome of C. farinosa, 251 in C. glandulosa, 227 in M. crassifolia and 233 in M. oblongifolia, the majority of which are mononucleotides A/T found in the intergenic spacer. Comparative analysis revealed variable hotspot regions (atpF, rpoC2, rps19 and ycf1), which can be used as molecular markers for species authentication and as regions for inferring phylogenetic relationships among them, as well as for evolutionary studies. The monophyly of Capparaceae and other families under Brassicales, as well as the phylogenetic positions of the studied species, are highly supported by all the relationships in the phylogenetic tree. The cp genomes reported in this study will provide resources for studying the genetic diversity of Capparaceae, as well as resolving phylogenetic relationships within the family.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Yunyan Zhang ◽  
Yongjing Tian ◽  
David Y. P. Tng ◽  
Jingbo Zhou ◽  
Yuntian Zhang ◽  
...  

Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiheng Wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Background Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. Results The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42–47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bobby Lim-Ho Kong ◽  
Hyun-Seung Park ◽  
Tai-Wai David Lau ◽  
Zhixiu Lin ◽  
Tae-Jin Yang ◽  
...  

AbstractIlex is a monogeneric plant group (containing approximately 600 species) in the Aquifoliaceae family and one of the most commonly used medicinal herbs. However, its taxonomy and phylogenetic relationships at the species level are debatable. Herein, we obtained the complete chloroplast genomes of all 19 Ilex types that are native to Hong Kong. The genomes are conserved in structure, gene content and arrangement. The chloroplast genomes range in size from 157,119 bp in Ilex graciliflora to 158,020 bp in Ilex kwangtungensis. All these genomes contain 125 genes, of which 88 are protein-coding and 37 are tRNA genes. Four highly varied sequences (rps16-trnQ, rpl32-trnL, ndhD-psaC and ycf1) were found. The number of repeats in the Ilex genomes is mostly conserved, but the number of repeating motifs varies. The phylogenetic relationship among the 19 Ilex genomes, together with eight other available genomes in other studies, was investigated. Most of the species could be correctly assigned to the section or even series level, consistent with previous taxonomy, except Ilex rotunda var. microcarpa, Ilex asprella var. tapuensis and Ilex chapaensis. These species were reclassified; I. rotunda was placed in the section Micrococca, while the other two were grouped with the section Pseudoaquifolium. These studies provide a better understanding of Ilex phylogeny and refine its classification.


2018 ◽  
Vol 19 (12) ◽  
pp. 3780 ◽  
Author(s):  
Dingxuan He ◽  
Andrew Gichira ◽  
Zhizhong Li ◽  
John Nzei ◽  
Youhao Guo ◽  
...  

The order Nymphaeales, consisting of three families with a record of eight genera, has gained significant interest from botanists, probably due to its position as a basal angiosperm. The phylogenetic relationships within the order have been well studied; however, a few controversial nodes still remain in the Nymphaeaceae. The position of the Nuphar genus and the monophyly of the Nymphaeaceae family remain uncertain. This study adds to the increasing number of the completely sequenced plastid genomes of the Nymphaeales and applies a large chloroplast gene data set in reconstructing the intergeneric relationships within the Nymphaeaceae. Five complete chloroplast genomes were newly generated, including a first for the monotypic Euryale genus. Using a set of 66 protein-coding genes from the chloroplast genomes of 17 taxa, the phylogenetic position of Nuphar was determined and a monophyletic Nymphaeaceae family was obtained with convincing statistical support from both partitioned and unpartitioned data schemes. Although genomic comparative analyses revealed a high degree of synteny among the chloroplast genomes of the ancient angiosperms, key minor variations were evident, particularly in the contraction/expansion of the inverted-repeat regions and in RNA-editing events. Genome structure, and gene content and arrangement were highly conserved among the chloroplast genomes. The intergeneric relationships defined in this study are congruent with those inferred using morphological data.


Sign in / Sign up

Export Citation Format

Share Document