scholarly journals Comparative Analyses of Chloroplast Genomes From 14 Zanthoxylum Species: Identification of Variable DNA Markers and Phylogenetic Relationships Within the Genus

2021 ◽  
Vol 11 ◽  
Author(s):  
Kaihui Zhao ◽  
Lianqiang Li ◽  
Hong Quan ◽  
Junbo Yang ◽  
Zhirong Zhang ◽  
...  

Zanthoxylum L. is an economic crop with a long history of cultivation and domestication and has important economic, ecological, and medicinal value. To solve the classification problems caused by the similar morphological characteristics of Zanthoxylum and establish a credible phylogenetic relationship, we sequenced and annotated six Zanthoxylum chloroplast (cp) genomes (Z. piasezkii, Z. armatum, Z. motuoense, Z. oxyphyllum, Z. multijugum, and Z. calcicola) and combined them with previously published genomes for the Zanthoxylum species. We used bioinformatics methods to analyze the genomic characteristics, contraction, and expansion of inverted repeat (IR) regions; differences in simple sequence repeats (SSRs) and long repeat sequences; species pairwise Ka/Ks ratios; divergence hotspots; and phylogenetic relationships of the 14 Zanthoxylum species. The results revealed that cp genomes of Zanthoxylum range in size from 158,071 to 158,963 bp and contain 87 protein-coding, 37 tRNA, and 8 rRNA genes. Seven mutational hotspots were identified as candidate DNA barcode sequences to distinguish Zanthoxylum species. The phylogenetic analysis strongly supported the genus Fagara as a subgenus of Zanthoxylum and proposed the possibility of a new subgenus in Zanthoxylum. The availability of these genomes will provide valuable information for identifying species, molecular breeding, and evolutionary analysis of Zanthoxylum.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8450 ◽  
Author(s):  
Sunan Huang ◽  
Xuejun Ge ◽  
Asunción Cano ◽  
Betty Gaby Millán Salazar ◽  
Yunfei Deng

The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689–150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796–82,919 bp), a small single copy region (SSC, 17,084–17,092 bp), and a pair of inverted repeat regions (IRs, 25,401–25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%–38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species.


2020 ◽  
Author(s):  
Jingling Li ◽  
Jianmin Tang ◽  
Siyuan Zeng ◽  
Fang Han ◽  
Jing Yuan ◽  
...  

Abstract Background Pilea is a genus of perennial herbs from the family Urticaceae, which are used for courtyard ornamental. For some species, they are used as medicinal plants in traditional Chinese medicine as well. The morphological characteristics of medicinal species from Pilea are similar, and it is difficult to accurately distinguish them based only on morphological characteristics. Besides, the species classification of Pilea are still controversial. The classification of many species are still in an unresolved state. At present, there is no information about the chloroplast genomes of Pilea, which limits our further understanding of this genus. Here, we first reported 4 chloroplast genomes of Pilea taxa (P. mollis, P. glauca, P. peperomioides and P. serpyllacea), and performed comprehensive comparative analysis. Results The four chloroplast genomes have similar structural characteristics and gene order with other angiosperms. These genomes all have a typical quartile structure, which contains 113 unique genes, including 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Besides, we detected SSRs and repeat sequences, and analyzed the expansion/contraction of IR regions. In particular, the comparative analysis showed a rather level of sequence divergence in the non-coding regions, even in the protein-coding regions of the four genome sequences, suggesting a high level of genetic diversity in Pilea. Moreover, we identified eight hypervariable regions, including petN-psbM; psbZ-trnG-GCC; trnT-UGU-trnL-UAA; accD-psbI; ndhF-rpl32; rpl32-trnL-UAG; ndhA-intron and ycf1, are proposed for use as DNA barcode regions. Phylogenetic analysis showed that four Pilea species form a monophyletic cluster with a 100% bootstrap value. Conclusion The results obtained here could provide abundant information for the phylogenetic position of Pilea and further species identification. High levels of sequences divergence promote our understanding of the interspecific diversity of this genus, also provide reference for the rational classification of unsolved species in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongxia Yang ◽  
Wenhui Li ◽  
Xiaolei Yu ◽  
Xiaoying Zhang ◽  
Zhongyi Zhang ◽  
...  

AbstractGleditsia sinensis is an endemic species widely distributed in China with high economic and medicinal value. To explore the genomic evolution and phylogenetic relationships of G. sinensis, the complete mitochondrial (mt) genome of G. sinensis was sequenced and assembled, which was firstly reported in Gleditsia. The mt genome was circular and 594,121 bp in length, including 37 protein-coding genes (PCGs), 19 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. The overall base composition of the G. sinensis mt genome was 27.4% for A, 27.4% for T, 22.6% for G, 22.7% for C. The comparative analysis of PCGs in Fabaceae species showed that most of the ribosomal protein genes and succinate dehydrogenase genes were lost. In addition, we found that the rps4 gene was only lost in G. sinensis, whereas it was retained in other Fabaceae species. The phylogenetic analysis based on shared PCGs of 24 species (22 Fabaceae and 2 Solanaceae) showed that G. sinensis is evolutionarily closer to Senna species. In general, this research will provide valuable information for the evolution of G. sinensis and provide insight into the phylogenetic relationships within the family Fabaceae.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jin Xu ◽  
Chen Liu ◽  
Yun Song ◽  
Mingfu Li

The genus Pennisetum (Poaceae) is both a forage crop and staple food crop in the tropics. In this study, we obtained chloroplast genome sequences of four species of Pennisetum (P. alopecuroides, P. clandestinum, P. glaucum, and P. polystachion) using Illumina sequencing. These chloroplast genomes have circular structures of 136,346–138,119 bp, including a large single-copy region (LSC, 79,380–81,186 bp), a small single-copy region (SSC, 12,212–12,409 bp), and a pair of inverted repeat regions (IRs, 22,284–22,372 bp). The overall GC content of these chloroplast genomes was 38.6–38.7%. The complete chloroplast genomes contained 110 different genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analysis of nucleotide variability identified nine intergenic spacer regions (psbA-matK, matK-rps16, trnN-trnT, trnY-trnD-psbM, petN-trnC, rbcL-psaI, petA-psbJ, psbE-petL, and rpl32-trnL), which may be used as potential DNA barcodes in future species identification and evolutionary analysis of Pennisetum. The phylogenetic analysis revealed a close relationship between P. polystachion and P. glaucum, followed by P. clandestinum and P. alopecuroides. The completed genomes of this study will help facilitate future research on the phylogenetic relationships and evolution of Pennisetum species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Liao ◽  
Xin-Fen Gao ◽  
Jun-Yi Zhang ◽  
Heng-Ning Deng ◽  
Bo Xu

The taxonomy and evolutionary history of Sophora L., a genus with high economic and medicinal value, remain uncertain due to the absence of genetic resource (especially in China) and low polymorphism of molecular markers. Our aim was to elucidate the molecular evolution and phylogenetic relationships in chloroplast genomes of Sophora species in the early-diverging legume subfamily Papilionoideae (Fabaceae). We reported nine Sophora chloroplast genome from China using Illumina sequencing. We performed a series of analyses with previously published genomes of Sophora species to investigate their genomic characteristics, identified simple sequence repeats, large repeat sequences, tandem repeats, and highly polymorphic loci. The genomes were 152,953–158,087 bp in length, and contained 111–113 unique genes, including 76–78 protein coding, 31 tRNA, and 4 rRNA. The expansion of inverted repeat boundary of Sophora resulted in rps12 entering into the LSC region and loss of trnT-CGU gene in some species. Also, we found an approximately 23 kb inversion between trnC-GCA and trnF-GAA within the genus. In addition, we identified seven highly polymorphic loci (pi (π) > 0.035) suitable for inferring the phylogeny of Sophora species. Among these, three regions also co-occurred with large repeat sequences and support use of repeats as a proxy for the identification of polymorphic loci. Based on whole chloroplast genome and protein-coding sequences data-set, a well-supported phylogenetic tree of Sophora and related taxa showed that this genus is monophyletic, but sect. Disamaea and sect. Sophora, are incongruent with traditional taxonomic classifications based on fruit morphology. Our finding provides significant genetic resources to support further investigation into the phylogenetic relationship and evolution of the genus Sophora.


ZooKeys ◽  
2020 ◽  
Vol 995 ◽  
pp. 67-80
Author(s):  
Guolei Sun ◽  
Chao Zhao ◽  
Tian Xia ◽  
Qinguo Wei ◽  
Xiufeng Yang ◽  
...  

Mitochondrial DNA is a useful molecular marker for phylogenetic and evolutionary analysis. In the current study, we determined the complete mitochondrial genome of Eophona personata, the Japanese Grosbeak, and the phylogenetic relationships of E. personata and 16 other species of the family Fringillidae based on the sequences of 12 mitochondrial protein-coding genes. The mitochondrial genome of E. personata consists of 16,771 base pairs, and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and one control region. Analysis of the base composition revealed an A+T bias, a positive AT skew and a negative GC skew. The mitochondrial gene order and arrangement in E. personata was similar to the typical avian mitochondrial gene arrangement. Phylogenetic analysis of 17 species of Fringillidae, based on Bayesian inference and Maximum Likelihood (ML) estimation, showed that the genera Coccothraustes and Hesperiphona are closely related to the genus Eophona, and further showed a sister-group relationship of E. personata and E. migratoria.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1229
Author(s):  
Dhafer A. Alzahrani ◽  
Enas J. Albokhari ◽  
Samaila S. Yaradua ◽  
Abidina Abba

This study presents for the first time the complete chloroplast genomes of four medicinal species in the Capparaceae family belonging to two different genera, Cadaba and Maerua (i.e., C. farinosa, C. glandulosa, M. crassifolia and M. oblongifolia), to investigate their evolutionary process and to infer their phylogenetic positions. The four species are considered important medicinal plants, and are used in the treatment of many diseases. In the genus Cadaba, the chloroplast genome ranges from 156,481 bp to 156,560 bp, while that of Maerua ranges from 155,685 bp to 155,436 bp. The chloroplast genome of C. farinosa, M. crassifolia and M. oblongifolia contains 138 genes, while that of C. glandulosa contains 137 genes, comprising 81 protein-coding genes, 31 tRNA genes and 4 rRNA genes. Out of the total genes, 116–117 are unique, while the remaining 19 are replicated in inverted repeat regions. The psbG gene, which encodes for subunit K of NADH dehydrogenase, is absent in C. glandulosa. A total of 249 microsatellites were found in the chloroplast genome of C. farinosa, 251 in C. glandulosa, 227 in M. crassifolia and 233 in M. oblongifolia, the majority of which are mononucleotides A/T found in the intergenic spacer. Comparative analysis revealed variable hotspot regions (atpF, rpoC2, rps19 and ycf1), which can be used as molecular markers for species authentication and as regions for inferring phylogenetic relationships among them, as well as for evolutionary studies. The monophyly of Capparaceae and other families under Brassicales, as well as the phylogenetic positions of the studied species, are highly supported by all the relationships in the phylogenetic tree. The cp genomes reported in this study will provide resources for studying the genetic diversity of Capparaceae, as well as resolving phylogenetic relationships within the family.


2019 ◽  
Vol 20 (16) ◽  
pp. 4040 ◽  
Author(s):  
Yingxian Cui ◽  
Xinlian Chen ◽  
Liping Nie ◽  
Wei Sun ◽  
Haoyu Hu ◽  
...  

Amomum villosum is an important medicinal and edible plant with several pharmacologically active volatile oils. However, identifying A. villosum from A. villosum var. xanthioides and A. longiligulare which exhibit similar morphological characteristics to A. villosum, is difficult. The main goal of this study, therefore, is to mine genetic resources and improve molecular methods that could be used to distinguish these species. A total of eight complete chloroplasts (cp) genomes of these Amomum species which were collected from the main producing areas in China were determined to be 163,608–164,069 bp in size. All genomes displayed a typical quadripartite structure with a pair of inverted repeat (IR) regions (29,820–29,959 bp) that separated a large single copy (LSC) region (88,680–88,857 bp) from a small single copy (SSC) region (15,288–15,369 bp). Each genome encodes 113 different genes with 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. More than 150 SSRs were identified in the entire cp genomes of these three species. The Sanger sequencing results based on 32 Amomum samples indicated that five highly divergent regions screened from cp genomes could not be used to distinguish Amomum species. Phylogenetic analysis showed that the cp genomes could not only accurately identify Amomum species, but also provide a solid foundation for the establishment of phylogenetic relationships of Amomum species. The availability of cp genome resources and the comparative analysis is beneficial for species authentication and phylogenetic analysis in Amomum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bobby Lim-Ho Kong ◽  
Hyun-Seung Park ◽  
Tai-Wai David Lau ◽  
Zhixiu Lin ◽  
Tae-Jin Yang ◽  
...  

AbstractIlex is a monogeneric plant group (containing approximately 600 species) in the Aquifoliaceae family and one of the most commonly used medicinal herbs. However, its taxonomy and phylogenetic relationships at the species level are debatable. Herein, we obtained the complete chloroplast genomes of all 19 Ilex types that are native to Hong Kong. The genomes are conserved in structure, gene content and arrangement. The chloroplast genomes range in size from 157,119 bp in Ilex graciliflora to 158,020 bp in Ilex kwangtungensis. All these genomes contain 125 genes, of which 88 are protein-coding and 37 are tRNA genes. Four highly varied sequences (rps16-trnQ, rpl32-trnL, ndhD-psaC and ycf1) were found. The number of repeats in the Ilex genomes is mostly conserved, but the number of repeating motifs varies. The phylogenetic relationship among the 19 Ilex genomes, together with eight other available genomes in other studies, was investigated. Most of the species could be correctly assigned to the section or even series level, consistent with previous taxonomy, except Ilex rotunda var. microcarpa, Ilex asprella var. tapuensis and Ilex chapaensis. These species were reclassified; I. rotunda was placed in the section Micrococca, while the other two were grouped with the section Pseudoaquifolium. These studies provide a better understanding of Ilex phylogeny and refine its classification.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2137 ◽  
Author(s):  
Xiang-Xiao Meng ◽  
Yan-Fang Xian ◽  
Li Xiang ◽  
Dong Zhang ◽  
Yu-Hua Shi ◽  
...  

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405–85,557 bp), small single-copy regions (SSC; 18,550–18,768 bp), and a pair of inverted repeats (IRs; 25,576–25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39–53 long repeats and 79–91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.


Sign in / Sign up

Export Citation Format

Share Document