scholarly journals Implications for Emotion: Using Anatomically Based Facial Coding to Compare Emoji Faces Across Platforms

2021 ◽  
Vol 12 ◽  
Author(s):  
Jennifer M. B. Fugate ◽  
Courtny L. Franco

Emoji faces, which are ubiquitous in our everyday communication, are thought to resemble human faces and aid emotional communication. Yet, few studies examine whether emojis are perceived as a particular emotion and whether that perception changes based on rendering differences across electronic platforms. The current paper draws upon emotion theory to evaluate whether emoji faces depict anatomical differences that are proposed to differentiate human depictions of emotion (hereafter, “facial expressions”). We modified the existing Facial Action Coding System (FACS) (Ekman and Rosenberg, 1997) to apply to emoji faces. An equivalent “emoji FACS” rubric allowed us to evaluate two important questions: First, Anatomically, does the same emoji face “look” the same across platforms and versions? Second, Do emoji faces perceived as a particular emotion category resemble the proposed human facial expression for that emotion? To answer these questions, we compared the anatomically based codes for 31 emoji faces across three platforms and two version updates. We then compared those codes to the proposed human facial expression prototype for the emotion perceived within the emoji face. Overall, emoji faces across platforms and versions were not anatomically equivalent. Moreover, the majority of emoji faces did not conform to human facial expressions for an emotion, although the basic anatomical codes were shared among human and emoji faces. Some emotion categories were better predicted by the assortment of anatomical codes than others, with some individual differences among platforms. We discuss theories of emotion that help explain how emoji faces are perceived as an emotion, even when anatomical differences are not always consistent or specific to an emotion.

2011 ◽  
pp. 255-317 ◽  
Author(s):  
Daijin Kim ◽  
Jaewon Sung

The facial expression has long been an interest for psychology, since Darwin published The expression of Emotions in Man and Animals (Darwin, C., 1899). Psychologists have studied to reveal the role and mechanism of the facial expression. One of the great discoveries of Darwin is that there exist prototypical facial expressions across multiple cultures on the earth, which provided the theoretical backgrounds for the vision researchers who tried to classify categories of the prototypical facial expressions from images. The representative 6 facial expressions are afraid, happy, sad, surprised, angry, and disgust (Mase, 1991; Yacoob and Davis, 1994). On the other hand, real facial expressions that we frequently meet in daily life consist of lots of distinct signals, which are subtly different. Further research on facial expressions required an object method to describe and measure the distinct activity of facial muscles. The facial action coding system (FACS), proposed by Hager and Ekman (1978), defines 46 distinct action units (AUs), each of which explains the activity of each distinct muscle or muscle group. The development of the objective description method also affected the vision researchers, who tried to detect the emergence of each AU (Tian et. al., 2001).


2020 ◽  
pp. 59-69
Author(s):  
Walid Mahmod ◽  
Jane Stephan ◽  
Anmar Razzak

Automatic analysis of facial expressions is rapidly becoming an area of intense interest in computer vision and artificial intelligence research communities. In this paper an approach is presented for facial expression recognition of the six basic prototype expressions (i.e., joy, surprise, anger, sadness, fear, and disgust) based on Facial Action Coding System (FACS). The approach is attempting to utilize a combination of different transforms (Walid let hybrid transform); they consist of Fast Fourier Transform; Radon transform and Multiwavelet transform for the feature extraction. Korhonen Self Organizing Feature Map (SOFM) then used for patterns clustering based on the features obtained from the hybrid transform above. The result shows that the method has very good accuracy in facial expression recognition. However, the proposed method has many promising features that make it interesting. The approach provides a new method of feature extraction in which overcome the problem of the illumination, faces that varies from one individual to another quite considerably due to different age, ethnicity, gender and cosmetic also it does not require a precise normalization and lighting equalization. An average clustering accuracy of 94.8% is achieved for six basic expressions, where different databases had been used for the test of the method.


Author(s):  
Hyunwoong Ko ◽  
Kisun Kim ◽  
Minju Bae ◽  
Myo-Geong Seo ◽  
Gieun Nam ◽  
...  

The ability to express and recognize emotion via facial expressions is well known to change with age. The present study investigated the differences in the facial recognition and facial expression of the elderly (n = 57) and the young (n = 115) and measure how each group uses different facial muscles for each emotion with Facial Action Coding System (FACS). In facial recognition task, the elderly did not recognize facial expressions better than young people and reported stronger feelings of fear and sad from photographs. In making facial expression task, the elderly rated all their facial expressions as stronger than the younger, but in fact, they expressed strong expressions in fear and anger. Furthermore, the elderly used more muscles in the lower face when making facial expressions than younger people. These results help to understand better how the facial recognition and expression of the elderly change, and show that the elderly do not effectively execute the top-down processing concerning facial expression.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Friska G. Batoteng ◽  
Taufiq F. Pasiak ◽  
Shane H. R. Ticoalu

Abstract: Facial expression recognition is one way to recognize emotions which has not received much attention. Muscles that form facial expressions known as musculli facial, muscles that move the face and form human facial expressions: happy, sad, angry, fearful, disgusted and surprised which are the six basic expressions of human emotion. Human facial expressions can be measured using FACS (Facial Action Coding System). This study aims to determine the facial muscles which most frequently used and most rarely used, and determine the emotion expression of Jokowi, a presidential candidate, through assessment of the facial muscles using FACS. This study is a retrospective descriptive study. The research samples are the whole photo of Jokowi’s facial expression at first presidential debate in 2014, about 30 photos. Samples were taken from a video debate and confirmed to be a photo using Jokowi’s facial expressions which then further analyzed using FACS. The research showed that the most used action units and facial muscle is AU 1 whose work on frontal muscle pars medialis (14.75%). The least appear muscles on Jokowi’s facial expressions were musculus orbicularis oculi, pars palpebralis and AU 24 musculus obicularis oris (0.82%). The dominant facial expressions was seen in Jokowi was sad facial expression (36.67%).Keywords: musculi facialis, facial expression, expression of emotion, FACSAbstrak: Pengenalan ekspresi wajah adalah salah satu cara untuk mengenali emosi yang belum banyak diperhatikan. Otot-otot yang membentuk ekspresi wajah yaitu musculli facialis yang merupakan otot-otot penggerak wajah dan membentuk ekspresi – ekspresi wajah manusia yaitu bahagia, sedih, marah, takut, jijik dan terkejut yang merupakan 6 dasar ekspresi emosi manusia. Ekspresi wajah manusia dapat diukur dengan menggunakan parameter FACS (Facial Action Coding System). Penelitian ini bertujuan untuk mengetahui musculi facialis yang paling sering digunakan dan yang paling jarang digunakan, serta untuk menentukan ekspresi emosi calon presiden Jokowi. Desain penelitian ini yaitu penelitian deskriptif dengan retrospektif. Sampel penelitian ialah seluruh foto ekspresi wajah Jokowi saat debat calon presiden pertama tahun 2014 sebanyak 30 foto. Sampel diambil dari video debat dan dikonfirmasi menjadi foto kemudian dianalisis lebih lanjut menggunakan FACS. Penelitian ini didapatkan hasil bahwa Musculi yang paling banyak digerakkan, yaitu Musculi frontalis pars medialis (14,75%). Musculi yang paling sedikit muncul pada ekspresi wajah Jokowi yaitu musculus orbicularis oculi, pars palpebralis dan musculus obicularis oris (0,82%). Ekspresi wajah yang dominan dinampakkan oleh Jokowi merupakan ekspresi wajah sedih (36,67%).Kata kunci: musculi facialis, ekspresi wajah, ekspresi emosi, FACS


2018 ◽  
Vol 9 (2) ◽  
pp. 31-38
Author(s):  
Fransisca Adis ◽  
Yohanes Merci Widiastomo

Facial expression is one of some aspects that can deliver story and character’s emotion in 3D animation. To achieve that, we need to plan the character facial from very beginning of the production. At early stage, the character designer need to think about the expression after theu done the character design. Rigger need to create a flexible rigging to achieve the design. Animator can get the clear picture how they animate the facial. Facial Action Coding System (FACS) that originally developed by Carl-Herman Hjortsjo and adopted by Paul Ekman and Wallace V. can be used to identify emotion in a person generally. This paper is going to explain how the Writer use FACS to help designing the facial expression in 3D characters. FACS will be used to determine the basic characteristic of basic shapes of the face when show emotions, while compare with actual face reference. Keywords: animation, facial expression, non-dialog


Traditio ◽  
2014 ◽  
Vol 69 ◽  
pp. 125-145
Author(s):  
Kirsten Wolf

The human face has the capacity to generate expressions associated with a wide range of affective states. Despite the fact that there are few words to describe human facial behaviors, the facial muscles allow for more than a thousand different facial appearances. Some examples of feelings that can be expressed are anger, concentration, contempt, excitement, nervousness, and surprise. Regardless of culture or language, the same expressions are associated with the same emotions and vary only in intensity. Using modern psychological analyses as a point of departure, this essay examines descriptions of human facial expressions as well as such bodily “symptoms” as flushing, turning pale, and weeping in Old Norse-Icelandic literature. The aim is to analyze the manner in which facial signs are used as a means of non-verbal communication to convey the impression of an individual's internal state to observers. More specifically, this essay seeks to determine when and why characters in these works are described as expressing particular facial emotions and, especially, the range of emotions expressed. The Sagas andþættirof Icelanders are in the forefront of the analysis and yield well over one hundred references to human facial expression and color. The examples show that through gaze, smiling, weeping, brows that are raised or knitted, and coloration, the Sagas andþættirof Icelanders tell of happiness or amusement, pleasant and unpleasant surprise, fear, anger, rage, sadness, interest, concern, and even mixed emotions for which language has no words. The Sagas andþættirof Icelanders may be reticent in talking about emotions and poor in emotional vocabulary, but this poverty is compensated for by making facial expressions signifiers of emotion. This essay makes clear that the works are less emotionally barren than often supposed. It also shows that our understanding of Old Norse-Icelandic “somatic semiotics” may well depend on the universality of facial expressions and that culture-specific “display rules” or “elicitors” are virtually nonexistent.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Hazim Alkawaz ◽  
Ahmad Hoirul Basori ◽  
Dzulkifli Mohamad ◽  
Farhan Mohamed

Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2578
Author(s):  
Yu-Jin Hong ◽  
Sung Eun Choi ◽  
Gi Pyo Nam ◽  
Heeseung Choi ◽  
Junghyun Cho ◽  
...  

Facial expressions are one of the important non-verbal ways used to understand human emotions during communication. Thus, acquiring and reproducing facial expressions is helpful in analyzing human emotional states. However, owing to complex and subtle facial muscle movements, facial expression modeling from images with face poses is difficult to achieve. To handle this issue, we present a method for acquiring facial expressions from a non-frontal single photograph using a 3D-aided approach. In addition, we propose a contour-fitting method that improves the modeling accuracy by automatically rearranging 3D contour landmarks corresponding to fixed 2D image landmarks. The acquired facial expression input can be parametrically manipulated to create various facial expressions through a blendshape or expression transfer based on the FACS (Facial Action Coding System). To achieve a realistic facial expression synthesis, we propose an exemplar-texture wrinkle synthesis method that extracts and synthesizes appropriate expression wrinkles according to the target expression. To do so, we constructed a wrinkle table of various facial expressions from 400 people. As one of the applications, we proved that the expression-pose synthesis method is suitable for expression-invariant face recognition through a quantitative evaluation, and showed the effectiveness based on a qualitative evaluation. We expect our system to be a benefit to various fields such as face recognition, HCI, and data augmentation for deep learning.


Author(s):  
Michel Valstar ◽  
Stefanos Zafeiriou ◽  
Maja Pantic

Automatic Facial Expression Analysis systems have come a long way since the earliest approaches in the early 1970s. We are now at a point where the first systems are commercially applied, most notably smile detectors included in digital cameras. As one of the most comprehensive and objective ways to describe facial expressions, the Facial Action Coding System (FACS) has received significant and sustained attention within the field. Over the past 30 years, psychologists and neuroscientists have conducted extensive research on various aspects of human behaviour using facial expression analysis coded in terms of FACS. Automating FACS coding would make this research faster and more widely applicable, opening up new avenues to understanding how we communicate through facial expressions. Mainly due to the cost effectiveness of existing recording equipment, until recently almost all work conducted in this area involves 2D imagery, despite their inherent problems relating to pose and illumination variations. In order to deal with these problems, 3D recordings are increasingly used in expression analysis research. In this chapter, the authors give an overview of 2D and 3D FACS recognition, and summarise current challenges and opportunities.


Sign in / Sign up

Export Citation Format

Share Document