scholarly journals HIIT Models in Addition to Training Load and Heart Rate Variability Are Related With Physiological and Performance Adaptations After 10-Weeks of Training in Young Futsal Players

2021 ◽  
Vol 12 ◽  
Author(s):  
Fernando de Souza Campos ◽  
Fernando Klitzke Borszcz ◽  
Lucinar Jupir Forner Flores ◽  
Lilian Keila Barazetti ◽  
Anderson Santiago Teixeira ◽  
...  

IntroductionThe present study aimed to investigate the effects of two high-intensity interval training (HIIT) shuttle-run-based models, over 10 weeks on aerobic, anaerobic, and neuromuscular parameters, and the association of the training load and heart rate variability (HRV) with the change in the measures in young futsal players.MethodsEleven young male futsal players (age: 18.5 ± 1.1 years; body mass: 70.5 ± 5.7 kg) participated in this study. This pre-post study design was performed during a typical 10 weeks training period. HIIT sessions were conducted at 86% (HIIT86; n = 6) and 100% (HIIT100; n = 5) of peak speed of the FIET. Additionally, friendly and official matches, technical-tactical and strength-power training sessions were performed. Before and after the training period, all players performed the FIET, treadmill incremental, repeated sprint ability (RSA), sprint 15-m, and vertical jump tests (CMJ and SJ), and the HRV was measured. Training load (TL) was monitored using the session rating of perceived effort. Data analysis was carried out using Bayesian inference methods.ResultsThe HIIT86 model showed clear improvements for the peak oxygen uptake (VO2peak), peak speed in the treadmill incremental test, first and second ventilatory thresholds, RSA best and mean times, CMJ, and SJ. The HIIT100 model presented distinct advances in VO2peak, peak speed in the treadmill incremental test, RSA mean time, and CMJ. Between HIIT models comparisons showed more favorable probabilities of improvement for HIIT86 than HIIT100 model in all parameters. TL data and HIIT models strongly explained the changes in the RSA mean and best times (R2 = 0.71 and 0.87, respectively), as well as HRV changes, and HIIT models explained positively VO2peak changes (R2 = 0.72). All other changes in the parameters were low to moderately explained.ConclusionThe HIIT86 proved to be more effective for improving aerobic, RSA, and neuromuscular parameters than HIIT100 during a typical 10-week futsal training period. So, strength and conditioning specialists prescribing shuttle-run intermittent exercises at submaximal intensities can manage the individual acceleration load imposed on athlete increasing or decreasing either the set duration or the frequency of change of direction during HIIT programming.

2020 ◽  
Vol 15 (10) ◽  
pp. 1448-1454
Author(s):  
Piia Kaikkonen ◽  
Esa Hynynen ◽  
Arto Hautala ◽  
Juha P. Ahtiainen

Purpose: It is known that modifying the endurance-type training load of athletes may result in altered cardiac autonomic modulation that may be estimated with heart rate variability (HRV). However, the specific effects of intensive resistance-type training remain unclear. The main aim of this study was to find out whether an intensive 2-wk resistance training period affects the nocturnal HRV and strength performance of healthy participants. Methods: Young healthy men (N = 13, age 24 [2] y) performed 2-wk baseline training, 2-wk intensive training, and a 9-d tapering periods, with 2, 5, and 2 hypertrophic whole-body resistance exercise sessions per week, respectively. Maximal isometric and dynamic strength were tested at the end of these training periods. Nocturnal HRV was also analyzed at the end of these training periods. Results: As a main finding, the nocturnal root mean square of differences of successive R-R intervals decreased (P = .004; from 49 [18] to 43 [15] ms; 95% CI, 2.4–10.4; effect size = 0.97) during the 2-wk intensive resistance training period. In addition, maximal isometric strength improved slightly (P = .045; from 3933 [1362] to 4138 [1540] N; 95% CI, 5.4–404; effect size = 0.60). No changes were found in 1-repetition-maximum leg press or leg press repetitions at 80% 1-repetition maximum. Conclusions: The present data suggest that increased training load due to a short-term intensive resistance training period can be detected by nocturnal HRV. However, despite short-term accumulated physiological stress, a tendency of improvement in strength performance was detected.


Author(s):  
Lorival José Carminatti ◽  
Bruna Nunes Batista ◽  
Juliano Fernandes da Silva ◽  
Artur Ferreira Tramontin ◽  
Vitor Pereira Costa ◽  
...  

AbstractThe objective of the present study was to determine the validity of Carminatti’s shuttle run incremental test–T-Car derived parameters in estimating the maximal lactate steady state determined in shuttle run format. Eighteen soccer players performed a T-Car test, and several trials to determine the maximal lactate steady state. From T-Car were derived the heart rate deflection point, peak speed, maximal heart rate and parameters resulting from percentage of peak measures. The validity was accessed by Bland-Altman plots, linear regressions, and two one-sided tests of equivalence analysis. The results showed the speed at 80.4% of T-Car peak speed, the heart rate deflection point and the 91.4% of maximal heart rate were equivalent to maximal lactate steady state (Mean difference; ±90% compatibility interval; −0.8; ±1.5%, −0.4; ±1.1%, and 0.0; ±2.7%, respectively). Additionally, peak speed during the T-Car test was a stronger predictor of maximal lactate steady state (MLSS [km/h]=2.57+0.65 × sPeak; r=0.82 [90% CI; 0.62–0.92], standard error of the estimate=3.6%; 90% CI ×/÷1.4). Therefore, soccer players can use the T-Car derived parameters as a noninvasive and practical alternative to estimate the specific maximal lactate steady state for soccer.


2021 ◽  
Vol 18 (3) ◽  
pp. 147916412110201
Author(s):  
Katarzyna Szmigielska ◽  
Anna Jegier

The study evaluated the influence of cardiac rehabilitation (CR) on heart rate variability (HRV) in men with coronary artery disease (CAD) with and without diabetes. Method: The study population included 141 male CAD patients prospectively and consecutively admitted to an outpatient comprehensive CR program. Twenty-seven patients with type-2 diabetes were compared with 114 males without diabetes. The participants performed a 45-min cycle ergometer interval training alternating 4-min workload and a 2-min active restitution three times a week for 8 weeks. The training intensity was adjusted so that the patient’s heart rate achieved the training heart rate calculated according to the Karvonen formula. At the baseline and after 8 weeks, all the patients underwent the HRV assessment. Results: HRV indices in the patients with diabetes were significantly lower as compared to the patients without diabetes in SDNN, TP, LF parameters, both at the baseline and after 8 weeks of CR. After 8 weeks of CR, a significant improvement of TP, SDNN, pNN50% and HF occurred in the patients without diabetes, whereas in the patients with diabetes only HF component improved significantly. Conclusions: As regards HRV indices, CR seems to be less effective in patients with CAD and type-2 diabetes.


Author(s):  
Abdullah Alansare ◽  
Ken Alford ◽  
Sukho Lee ◽  
Tommie Church ◽  
Hyun Jung

Physically inactive adults are prevalent worldwide. This study compared the effects of short-term high-intensity interval training (HIIT) versus moderate-intensity continuous training (MICT) on heart rate variability (HRV) in physically inactive adults as a preliminary study. Thirteen physically inactive male adults (27.5 ± 3.80 years) were randomly assigned to HIIT (N = 7) or MICT (N = 6). The HIIT program consisted of 20 min of interval training with cycling to rest ratio of 10/50 s at ≥90% HRpeak, while the MICT program consisted of 40 min of continuous cycling at 60–75% HRpeak. Both groups completed eight sessions of training within two weeks. Time and frequency domains of HRV were measured for 20 min with Actiwave-Cardio monitor (CamNtech, UK). The number of R-R interval and inter-beat interval (IBI) were significantly improved (p < 0.05) in both HIIT and MICT programs following eight sessions of training. A significant interaction effect for group by time was found in the lnLF/HF ratio (p < 0.05) where it was only improved in the HIIT group from pre- to post-test. The HIIT program is superior to MICT in improving HRV in physically inactive adults. The HIIT program can be applied as a time-efficient program for improving cardiac-autoregulation.


Author(s):  
Sigbjørn Litleskare ◽  
Eystein Enoksen ◽  
Marit Sandvei ◽  
Line Støen ◽  
Trine Stensrud ◽  
...  

The purpose of the present study was to investigate training-specific adaptations to eight weeks of moderate intensity continuous training (CT) and sprint interval training (SIT). Young healthy subjects (n = 25; 9 males and 16 females) performed either continuous training (30–60 min, 70–80% peak heart rate) or sprint interval training (5–10 near maximal 30 s sprints, 3 min recovery) three times per week for eight weeks. Maximal oxygen consumption, 20 m shuttle run test and 5·60 m sprint test were performed before and after the intervention. Furthermore, heart rate, oxygen pulse, respiratory exchange ratio, lactate and running economy were assessed at five submaximal intensities, before and after the training interventions. Maximal oxygen uptake increased after CT (before: 47.9 ± 1.5; after: 49.7 ± 1.5 mL·kg−1·min−1, p < 0.05) and SIT (before: 50.5 ± 1.6; after: 53.3 ± 1.5 mL·kg−1·min−1, p < 0.01), with no statistically significant differences between groups. Both groups increased 20 m shuttle run performance and 60 m sprint performance, but SIT performed better than CT at the 4th and 5th 60 m sprint after the intervention (p < 0.05). At submaximal intensities, CT, but not SIT, reduced heart rate (p < 0.05), whereas lactate decreased in both groups. In conclusion, both groups demonstrated similar improvements of several performance measures including VO2max, but sprint performance was better after SIT, and CT caused training-specific adaptations at submaximal intensities.


Author(s):  
Rohan Edmonds ◽  
Julian Egan-Shuttler ◽  
Stephen J. Ives

Heart rate variability (HRV) is a reputable estimate of cardiac autonomic function used across multiple athletic populations to document the cardiac autonomic responses to sport demands. However, there is a knowledge gap of HRV responses in female youth rowers. Thus, the purpose of this study was to measure HRV weekly, over a 15-week training period, covering pre-season and up to competition in youth female rowers, in order to understand the physiological response to long-term training and discern how fluctuations in HRV may relate to performance in this population. Measures of heart rate and heart rate variability were recorded before training each Friday over the monitoring period in seven athletes. Analysis of heart rate variability focused on time domain indices, the standard deviation of all normal to normal R–R wave intervals, and the root mean square of successive differences as markers of cardiac parasympathetic modulation. Training load was quantified by multiplying the rating of perceived exertion of the weeks training and training duration. A decrease was identified in cardiac parasympathetic modulation as the season progressed (Effect Size (Cohen’s d) = −0.34 to −0.8, weeks 6 and 11–15), despite no significant relationship between training load and heart rate variability. Factors outside of training may further compound the reduction in heart rate variability, with further monitoring of external stressors (e.g., school) in adolescent athletes.


Sports ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 109
Author(s):  
Joseph O. C. Coyne ◽  
Aaron J. Coutts ◽  
Roman Fomin ◽  
Duncan N. French ◽  
Robert U. Newton ◽  
...  

This study’s purpose was to examine heart rate variability (HRV) and direct current potential (DC) measures’ sensitivity and correlations between changes in the acute recovery and stress scale (ARSS) and the previous day’s training load. Training load, HRV, DC and ARSS data were collected from fourteen professional mixed martial arts athletes (32.6 ± 5.3 years, 174.8 ± 8.8 cm, 79.2 ± 17.5 kg) the following morning after hard, easy and rest days. Sensitivity was expressed as a signal-to-noise ratio (SNR, inter-day typical error (TE) or coefficient of variation (%CV) divided by intra-day TE or %CV). Correlations between HRV, DC and ARSS with training load were also examined. The SNRs for the various HRV and DC measures were acceptable to good (1.02–2.85). There was a 23.1% CV average increase between measures taken between different locations versus the same location. Training load changes were not correlated with HRV/DC but were correlated with ARSS stress variables. Practitioners should be aware of HRV/DC variability; however the daily training signal was greater than the test-retest error in this investigation. Upon awakening, HRV/DC measures appear superior for standardization and planning. HRV and DC measures were less sensitive to the previous day’s training load than ARSS measures.


Sign in / Sign up

Export Citation Format

Share Document